
Side-Channels Attacks on PAKE protocols

Daniel De Almeida Braga
CEA - October, 11th 2022

1

Me, Myself and I

What I Have Been Doing

Cryptography in the Wild: The Security of Cryptographic
Implementations and Standards

2

What I Have Been Doing

2

What I Have Been Doing

Cryptography in the Wild: The Security of Cryptographic
Implementations and Standards

• Smart Cards protocol (SCP10)

• Password Authenticated Key Exchange (PAKE)

• Dragonfly (WPA3, EAP-pwd)
• SRP (deployed in many projects)

• User study on constant time tools usage/usability
• Formally verified implementations and constant-time
verification tools

2

What I Have Been Doing

Cryptography in the Wild: The Security of Cryptographic
Implementations and Standards

• Smart Cards protocol (SCP10)
• Password Authenticated Key Exchange (PAKE)

• Dragonfly (WPA3, EAP-pwd)
• SRP (deployed in many projects)

• User study on constant time tools usage/usability
• Formally verified implementations and constant-time
verification tools

2

What I Have Been Doing

Cryptography in the Wild: The Security of Cryptographic
Implementations and Standards

• Smart Cards protocol (SCP10)
• Password Authenticated Key Exchange (PAKE)

• Dragonfly (WPA3, EAP-pwd)

• SRP (deployed in many projects)

• User study on constant time tools usage/usability
• Formally verified implementations and constant-time
verification tools

2

What I Have Been Doing

Cryptography in the Wild: The Security of Cryptographic
Implementations and Standards

• Smart Cards protocol (SCP10)
• Password Authenticated Key Exchange (PAKE)

• Dragonfly (WPA3, EAP-pwd)
• SRP (deployed in many projects)

• User study on constant time tools usage/usability
• Formally verified implementations and constant-time
verification tools

2

What I Have Been Doing

Cryptography in the Wild: The Security of Cryptographic
Implementations and Standards

• Smart Cards protocol (SCP10)
• Password Authenticated Key Exchange (PAKE)

• Dragonfly (WPA3, EAP-pwd)
• SRP (deployed in many projects)

• User study on constant time tools usage/usability

• Formally verified implementations and constant-time
verification tools

2

What I Have Been Doing

Cryptography in the Wild: The Security of Cryptographic
Implementations and Standards

• Smart Cards protocol (SCP10)
• Password Authenticated Key Exchange (PAKE)

• Dragonfly (WPA3, EAP-pwd)
• SRP (deployed in many projects)

• User study on constant time tools usage/usability
• Formally verified implementations and constant-time
verification tools

2

Today’s Topics

1. Microarchitectural side-channel attacks on Dragonfly

• How does it work?
• Finding is easier than exploiting

2. How could these attacks have been prevented?

• Why were the implementations vulnerable?

3. Are there sustainable ways to fix these vulnerabilities?

3

Today’s Topics

1. Microarchitectural side-channel attacks on Dragonfly
• How does it work?
• Finding is easier than exploiting

2. How could these attacks have been prevented?

• Why were the implementations vulnerable?

3. Are there sustainable ways to fix these vulnerabilities?

3

Today’s Topics

1. Microarchitectural side-channel attacks on Dragonfly
• How does it work?
• Finding is easier than exploiting

2. How could these attacks have been prevented?

• Why were the implementations vulnerable?

3. Are there sustainable ways to fix these vulnerabilities?

3

Today’s Topics

1. Microarchitectural side-channel attacks on Dragonfly
• How does it work?
• Finding is easier than exploiting

2. How could these attacks have been prevented?
• Why were the implementations vulnerable?

3. Are there sustainable ways to fix these vulnerabilities?

3

Today’s Topics

1. Microarchitectural side-channel attacks on Dragonfly
• How does it work?
• Finding is easier than exploiting

2. How could these attacks have been prevented?
• Why were the implementations vulnerable?

3. Are there sustainable ways to fix these vulnerabilities?

3

Context and Motivations

A Few Words About PAKEs

What to expect from a PAKE, starting from a password:

• Authentication
• End up with a strong key
• Resist to (offline) dictionary attack

4

A Few Words About PAKEs

What to expect from a PAKE, starting from a password:

• Authentication
• End up with a strong key
• Resist to (offline) dictionary attack

4

Lots of different PAKEs

• Balanced/Symetric

1995 2000 2005 2010 2015 2020

DH
-EK

E

SP
EK
E

EK
E2

SP
EK
E2

OE
KE
JG SP

AK
E2

PA
CE
v1

J-P
AK
E
Dra

go
nfl
y/S

AE

PA
CE
v2

Pa
tch
ed
SP
EK
E

SE
SP
AK
E

TB
PE
KE

CP
ace

• Augmented/Asymetric

1995 2000 2005 2010 2015 2020

A-E
KE

B-S
PE
KE

SR
P-3

AM
P
SR
P-6

Re
vis
ed
AM
P

SP
AK
E2+

SR
P-6

a
Au
gP
AK
E

VT
BP
EK
E

OP
AQ
UE

Au
CP
ace

KC
-SP
AK
E2+

KH
AP
E

5

Lots of different PAKEs

• Balanced/Symetric

1995 2000 2005 2010 2015 2020

DH
-EK

E

SP
EK
E

EK
E2

SP
EK
E2

OE
KE
JG SP

AK
E2

PA
CE
v1

J-P
AK
E
Dra

go
nfl
y/S

AE

PA
CE
v2

Pa
tch
ed
SP
EK
E

SE
SP
AK
E

TB
PE
KE

CP
ace

• Augmented/Asymetric

1995 2000 2005 2010 2015 2020

A-E
KE

B-S
PE
KE

SR
P-3

AM
P
SR
P-6

Re
vis
ed
AM
P

SP
AK
E2+

SR
P-6

a
Au
gP
AK
E

VT
BP
EK
E

OP
AQ
UE

Au
CP
ace

KC
-SP
AK
E2+

KH
AP
E

5

Lots of different PAKEs

• Balanced/Symetric

1995 2000 2005 2010 2015 2020

DH
-EK

E

SP
EK
E

EK
E2

SP
EK
E2

OE
KE
JG SP

AK
E2

PA
CE
v1

J-P
AK
E
Dra

go
nfl
y/S

AE

PA
CE
v2

Pa
tch
ed
SP
EK
E

SE
SP
AK
E

TB
PE
KE

CP
ace

• Augmented/Asymetric

1995 2000 2005 2010 2015 2020

A-E
KE

B-S
PE
KE

SR
P-3

AM
P
SR
P-6

Re
vis
ed
AM
P

SP
AK
E2+

SR
P-6

a
Au
gP
AK
E

VT
BP
EK
E

OP
AQ
UE

Au
CP
ace

KC
-SP
AK
E2+

KH
AP
E

5

Lots of different PAKEs

• Balanced/Symetric

1995 2000 2005 2010 2015 2020

DH
-EK

E

SP
EK
E

EK
E2

SP
EK
E2

OE
KE
JG SP

AK
E2

PA
CE
v1

J-P
AK
E
Dra

go
nfl
y/S

AE

PA
CE
v2

Pa
tch
ed
SP
EK
E

SE
SP
AK
E

TB
PE
KE

CP
ace

• Augmented/Asymetric

1995 2000 2005 2010 2015 2020

A-E
KE

B-S
PE
KE

SR
P-3

AM
P
SR
P-6

Re
vis
ed
AM
P

SP
AK
E2+

SR
P-6

a
Au
gP
AK
E

VT
BP
EK
E

OP
AQ
UE

Au
CP
ace

KC
-SP
AK
E2+

KH
AP
E

5

Why Looking at PAKEs?

Recent interest (WPA3 and standardization) with practical security considerations

• Dragonfly and WPA3: Dragonblood1 and attack refinement2

• Partitioning Oracle Attack3 applied to some OPAQUE implementations
• Attacks on SRP4, 5

Lesson to learn: Small leakage can be devastating

6

1 M.Vanhoef and E.Ronen Dragonblood: Analyzing the Dragonfly Handshake of WPA3 and EAP-pwd. In IEEE S&P. 2020
2 D. De Almeida Braga et al. Dragonblood Is Still Leaking: Practical Cache-based Side-Channel in the Wild. In ACSAC. 2020
3 J.Len et al. Partitioning Oracle Attack. In USENIX Security. 2021
4 A.Russon Threat for the Secure Remote Password Protocol and a Leak in Apple’s Cryptographic Library. In ACSN. 2021
5 D. De Almeida Braga et al. PARASITE: PAssword Recovery Attack against Srp Implementations in ThE wild. In ACM CCS. 2021

Why Looking at PAKEs?

Recent interest (WPA3 and standardization) with practical security considerations

• Dragonfly and WPA3: Dragonblood1 and attack refinement2

• Partitioning Oracle Attack3 applied to some OPAQUE implementations
• Attacks on SRP4, 5

Lesson to learn: Small leakage can be devastating

6

1 M.Vanhoef and E.Ronen Dragonblood: Analyzing the Dragonfly Handshake of WPA3 and EAP-pwd. In IEEE S&P. 2020
2 D. De Almeida Braga et al. Dragonblood Is Still Leaking: Practical Cache-based Side-Channel in the Wild. In ACSAC. 2020

3 J.Len et al. Partitioning Oracle Attack. In USENIX Security. 2021
4 A.Russon Threat for the Secure Remote Password Protocol and a Leak in Apple’s Cryptographic Library. In ACSN. 2021
5 D. De Almeida Braga et al. PARASITE: PAssword Recovery Attack against Srp Implementations in ThE wild. In ACM CCS. 2021

Why Looking at PAKEs?

Recent interest (WPA3 and standardization) with practical security considerations

• Dragonfly and WPA3: Dragonblood1 and attack refinement2

• Partitioning Oracle Attack3 applied to some OPAQUE implementations

• Attacks on SRP4, 5

Lesson to learn: Small leakage can be devastating

6

1 M.Vanhoef and E.Ronen Dragonblood: Analyzing the Dragonfly Handshake of WPA3 and EAP-pwd. In IEEE S&P. 2020
2 D. De Almeida Braga et al. Dragonblood Is Still Leaking: Practical Cache-based Side-Channel in the Wild. In ACSAC. 2020
3 J.Len et al. Partitioning Oracle Attack. In USENIX Security. 2021

4 A.Russon Threat for the Secure Remote Password Protocol and a Leak in Apple’s Cryptographic Library. In ACSN. 2021
5 D. De Almeida Braga et al. PARASITE: PAssword Recovery Attack against Srp Implementations in ThE wild. In ACM CCS. 2021

Why Looking at PAKEs?

Recent interest (WPA3 and standardization) with practical security considerations

• Dragonfly and WPA3: Dragonblood1 and attack refinement2

• Partitioning Oracle Attack3 applied to some OPAQUE implementations
• Attacks on SRP4, 5

Lesson to learn: Small leakage can be devastating

6

1 M.Vanhoef and E.Ronen Dragonblood: Analyzing the Dragonfly Handshake of WPA3 and EAP-pwd. In IEEE S&P. 2020
2 D. De Almeida Braga et al. Dragonblood Is Still Leaking: Practical Cache-based Side-Channel in the Wild. In ACSAC. 2020
3 J.Len et al. Partitioning Oracle Attack. In USENIX Security. 2021
4 A.Russon Threat for the Secure Remote Password Protocol and a Leak in Apple’s Cryptographic Library. In ACSN. 2021
5 D. De Almeida Braga et al. PARASITE: PAssword Recovery Attack against Srp Implementations in ThE wild. In ACM CCS. 2021

Why Looking at PAKEs?

Recent interest (WPA3 and standardization) with practical security considerations

• Dragonfly and WPA3: Dragonblood1 and attack refinement2

• Partitioning Oracle Attack3 applied to some OPAQUE implementations
• Attacks on SRP4, 5

Lesson to learn: Small leakage can be devastating

6

1 M.Vanhoef and E.Ronen Dragonblood: Analyzing the Dragonfly Handshake of WPA3 and EAP-pwd. In IEEE S&P. 2020
2 D. De Almeida Braga et al. Dragonblood Is Still Leaking: Practical Cache-based Side-Channel in the Wild. In ACSAC. 2020
3 J.Len et al. Partitioning Oracle Attack. In USENIX Security. 2021
4 A.Russon Threat for the Secure Remote Password Protocol and a Leak in Apple’s Cryptographic Library. In ACSN. 2021
5 D. De Almeida Braga et al. PARASITE: PAssword Recovery Attack against Srp Implementations in ThE wild. In ACM CCS. 2021

Side Channel Attacks

def processPassword(pwd):
if "a" in pwd:

res = long_processing(pwd)
else:

res = short_processing(pwd)
return res

Gain information through timing:

� 0.5 seconds⇒ no a

� 10 seconds⇒ a

def processPassword2(pwd):
if "a" in pwd:

res = long_processing(pwd)
else:

res = long_processing2(pwd)
return res

Gain information execution flow:
• Execute long_processing⇒ a
• Else, no a in pwd

7

Side Channel Attacks

def processPassword(pwd):
if "a" in pwd:

res = long_processing(pwd)
else:

res = short_processing(pwd)
return res

Gain information through timing:

� 0.5 seconds⇒ no a

� 10 seconds⇒ a

def processPassword2(pwd):
if "a" in pwd:

res = long_processing(pwd)
else:

res = long_processing2(pwd)
return res

Gain information execution flow:
• Execute long_processing⇒ a
• Else, no a in pwd

7

Side Channel Attacks

def processPassword(pwd):
if "a" in pwd:

res = long_processing(pwd)
else:

res = short_processing(pwd)
return res

Gain information through timing:

� 0.5 seconds⇒ no a

� 10 seconds⇒ a

def processPassword2(pwd):
if "a" in pwd:

res = long_processing(pwd)
else:

res = long_processing2(pwd)
return res

Gain information execution flow:
• Execute long_processing⇒ a
• Else, no a in pwd

7

Side Channel Attacks

def processPassword(pwd):
if "a" in pwd:

res = long_processing(pwd)
else:

res = short_processing(pwd)
return res

Gain information through timing:

� 0.5 seconds⇒ no a

� 10 seconds⇒ a

def processPassword2(pwd):
if "a" in pwd:

res = long_processing(pwd)
else:

res = long_processing2(pwd)
return res

Gain information execution flow:
• Execute long_processing⇒ a
• Else, no a in pwd

7

Attack Workflow

Server

Victim

PAKE Protocol

Spy process
Trace parsing

Leaked information

Offline dictionary
attack

Remaining passwords

8

Attack Workflow

Server

Victim

PAKE Protocol

Spy process

Trace parsing

Leaked information

Offline dictionary
attack

Remaining passwords

8

Attack Workflow

Server

Victim

PAKE Protocol

Spy process
Trace parsing

Leaked information

Offline dictionary
attack

Remaining passwords

8

Attack Workflow

Server

Victim

PAKE Protocol

Spy process
Trace parsing

Leaked information

Offline dictionary
attack

Remaining passwords

8

Attack Workflow

Server

Victim

PAKE Protocol

Spy process
Trace parsing

Leaked information

Offline dictionary
attack

Remaining passwords

8

Attack Workflow

Server

Victim

PAKE Protocol

Spy process
Trace parsing

Leaked information

Offline dictionary
attack

Remaining passwords

8

Attack Workflow

Rogue AP

Victim

PAKE Protocol

Spy process
Trace parsing

Leaked information

Offline dictionary
attack

Remaining passwords

8

Side Channels in Dragonfly/SAE
(WPA3)

Toward Secure Wi-Fi Protocols...

Client Access Point


WEP

1999 2003

WPA

2004

WPA2

2018

WPA3

today

9

Toward Secure Wi-Fi Protocols...

Client Access Point


WEP

1999 2003

WPA

2004

WPA2

2018

WPA3

today

9

Toward Secure Wi-Fi Protocols...

Client Access Point


WEP

1999 2003

WPA

2004

WPA2

2018

WPA3

today

9

Toward Secure Wi-Fi Protocols...

Client Access Point


WEP

1999 2003

WPA

2004

WPA2

2018

WPA3

today

9

Toward Secure Wi-Fi Protocols...

Client Access Point


WEP

1999 2003

WPA

2004

WPA2

2018

WPA3

today

9

Offline dictionary

attack

Toward Secure Wi-Fi Protocols...

Client Access Point


WEP

1999 2003

WPA

2004

WPA2

2018

WPA3

today

9

Offline dictionary

attack
KR
AC
K a
tta
ck

Toward Secure Wi-Fi Protocols...

Client Access Point


WEP

1999 2003

WPA

2004

WPA2

2018

WPA3

today

9

+ More secure
+ Based on a PAKE (Dragonfly1)

1 D. Harkins, 2015, Dragonfly Key Exchange, RFC 7664

... But Still not Bullteproof

WEP

1999 2003

WPA

2004

WPA2

2018

WPA3

today2019

Dragonblood1

attacks

10

+ More secure
+ Based on a PAKE (Dragonfly)

1 M. Vanhoef et al. Dragonblood: Analyzing the Dragonfly Handshake of WPA3 and EAP-pwd. In IEEE S&P. 2020

... But Still not Bullteproof

WEP

1999 2003

WPA

2004

WPA2

2018

WPA3

today2019

Dragonblood1

attacks

X X

10

+ More secure
+ Based on a PAKE (Dragonfly)

1 M. Vanhoef et al. Dragonblood: Analyzing the Dragonfly Handshake of WPA3 and EAP-pwd. In IEEE S&P. 2020

Dragonfly / SAE - A Balanced PAKE

Alice

Verify cB

Bob

Verify cA

idArA, mA = rand(2, . . ., q-1)
sA = rA + mA mod q

P = pwd_conv(pwd, idA, idB)
QA = -mAP

Commit(sA, QA)

Check sB and QB
K = rA(sBP + QB)

kck || mk = KDF(Kx, label2)
ConfirmA

idB

rB,mB = rand(2,. . .,q-1)
sB = rB + mB mod q

P = pwd_conv(pwd, idA, idB)
QB = -mBP

Commit(sB, QB)
Check sA and QA
K = rB(sAP + QA)
kck || mk = KDF(Kx, label2)

ConfirmB

11

Dragonfly / SAE - A Balanced PAKE

Alice

Verify cB

Bob

Verify cA

idArA, mA = rand(2, . . ., q-1)
sA = rA + mA mod q

P = pwd_conv(pwd, idA, idB)
QA = -mAP

Commit(sA, QA)

Check sB and QB
K = rA(sBP + QB)

kck || mk = KDF(Kx, label2)
ConfirmA

idB

rB,mB = rand(2,. . .,q-1)
sB = rB + mB mod q

P = pwd_conv(pwd, idA, idB)
QB = -mBP

Commit(sB, QB)

Check sA and QA
K = rB(sAP + QA)
kck || mk = KDF(Kx, label2)

ConfirmB

11

Dragonfly / SAE - A Balanced PAKE

Alice

Verify cB

Bob

Verify cA

idArA, mA = rand(2, . . ., q-1)
sA = rA + mA mod q

P = pwd_conv(pwd, idA, idB)
QA = -mAP

Commit(sA, QA)

Check sB and QB
K = rA(sBP + QB)

kck || mk = KDF(Kx, label2)
ConfirmA

idB

rB,mB = rand(2,. . .,q-1)
sB = rB + mB mod q

P = pwd_conv(pwd, idA, idB)
QB = -mBP

Commit(sB, QB)
Check sA and QA
K = rB(sAP + QA)
kck || mk = KDF(Kx, label2)

ConfirmB

11

First attack (ACSAC 2020)

FLUSH+RELOAD1 and PDA2 Password to point on an Elliptic Curve

A cache-attack that lets us extract

information during the password conversion

leading to an offline dictionary attack .

Passive attacker can eliminate
wrong passwords from a list

12

First attack (ACSAC 2020)

FLUSH+RELOAD1 and PDA2

Password to point on an Elliptic Curve

A cache-attack that lets us extract

information during the password conversion

leading to an offline dictionary attack .

Passive attacker can eliminate
wrong passwords from a list

121 Y. Yarom et al. Flush+Reload: a High Resolution, Low Noise, L3 Cache Side-Channel Attack. In USENIX Security Symposium. 2014.
2 T. Allan et al. Amplifying side channels through performance degradation. In ACSAC. 2016

First attack (ACSAC 2020)

FLUSH+RELOAD1 and PDA2 Password to point on an Elliptic Curve

A cache-attack that lets us extract

information during the password conversion

leading to an offline dictionary attack .

Passive attacker can eliminate
wrong passwords from a list

12

First attack (ACSAC 2020)

FLUSH+RELOAD1 and PDA2 Password to point on an Elliptic Curve

A cache-attack that lets us extract

information during the password conversion

leading to an offline dictionary attack .

Passive attacker can eliminate
wrong passwords from a list

12

SAE - Probabilistic Password Conversion (EC)

def HuntingAndPecking(pwd, MACA, MACB, k=40):
found, i = false, 1
while not found or i < k:

seed = Hash(MACA, MACB, pwd, i)

xcand = KDF(seed, label)

← : new iteration

if xcand is a point's coordinate:

→ mask = get_random()

if not found:

do_blind_verif(xcand, mask)

found, x, seedx = true, xcand, seed

pwd = get_random()

← : successful conversion

i = i + 1
y = set_coordinates(x, seedx)
return (x, y)

Hash pwd, MACA, MACB and a counter until
we find a point coordinate. Do 40 iterations
anyway, but save the first conversion

13

SAE - Probabilistic Password Conversion (EC)

def HuntingAndPecking(pwd, MACA, MACB, k=40):
found, i = false, 1
while not found or i < k:

seed = Hash(MACA, MACB, pwd, i)

xcand = KDF(seed, label)

← : new iteration

if xcand is a point's coordinate:

→ mask = get_random()

if not found:

do_blind_verif(xcand, mask)

found, x, seedx = true, xcand, seed

pwd = get_random()

← : successful conversion

i = i + 1
y = set_coordinates(x, seedx)
return (x, y)

13

SAE - Probabilistic Password Conversion (EC)

def HuntingAndPecking(pwd, MACA, MACB, k=40):
found, i = false, 1
while not found or i < k:

seed = Hash(MACA, MACB, pwd, i)

xcand = KDF(seed, label) ← : new iteration
if xcand is a point's coordinate:

→ mask = get_random()

if not found:

do_blind_verif(xcand, mask)

found, x, seedx = true, xcand, seed

pwd = get_random()

← : successful conversion

i = i + 1
y = set_coordinates(x, seedx)
return (x, y)

13

SAE - Probabilistic Password Conversion (EC)

def HuntingAndPecking(pwd, MACA, MACB, k=40):
found, i = false, 1
while not found or i < k:

seed = Hash(MACA, MACB, pwd, i)

xcand = KDF(seed, label) ← : new iteration
if xcand is a point's coordinate:

→ mask = get_random()

if not found:

do_blind_verif(xcand, mask)

found, x, seedx = true, xcand, seed

pwd = get_random() ← : successful conversion
i = i + 1

y = set_coordinates(x, seedx)
return (x, y)

13

SAE - Probabilistic Password Conversion (EC)

def HuntingAndPecking(pwd, MACA, MACB, k=40):
found, i = false, 1
while not found or i < k:

seed = Hash(MACA, MACB, pwd, i)

xcand = KDF(seed, label) ← : new iteration
if xcand is a point's coordinate: → mask = get_random()

if not found: do_blind_verif(xcand, mask)
found, x, seedx = true, xcand, seed

pwd = get_random() ← : successful conversion
i = i + 1

y = set_coordinates(x, seedx)
return (x, y)

13

SAE - Probabilistic Password Conversion (EC)

def HuntingAndPecking(pwd, MACA, MACB, k=40):
found, i = false, 1
while not found or i < k:

seed = Hash(MACA, MACB, pwd, i)

xcand = KDF(seed, label) ← : new iteration
if xcand is a point's coordinate: → mask = get_random()

if not found: do_blind_verif(xcand, mask)
found, x, seedx = true, xcand, seed

pwd = get_random() ← : successful conversion
i = i + 1

y = set_coordinates(x, seedx)
return (x, y)

13

Now What?

• Iteration are easy to
distinguish

• We can guess which
iteration is converting the
password

200 400 600 800
0

50

100

150

Time
Cy
cl
es

ne
ed

ed
to

re
lo
ad

× KDF

× get_random

14

Now What?

• Iteration are easy to
distinguish

• We can guess which
iteration is converting the
password

200 400 600 800
0

50

100

150

Time
Cy
cl
es

ne
ed

ed
to

re
lo
ad

× KDF

× get_random 14

Dictionary Reduction

Iter. for
MACA, MACB1

Leakage 3

pwd1

1

pwd2

3

pwd3

3

pwd4

4

...

...

pwd5

3

15

Dictionary Reduction

Iter. for
MACA, MACB1

Leakage 3

pwd1 1
pwd2 3
pwd3 3
pwd4 4
... ...
pwd5 3

15

Dictionary Reduction

Iter. for
MACA, MACB1

Leakage 3

pwd1 1
pwd2 3
pwd3 3
pwd4 4
... ...
pwd5 3

15

Dictionary Reduction

Iter. for Iter. for
MACA, MACB1 MACA, MACB2

Leakage 3 2

pwd1 1 X
pwd2 3 8
pwd3 3 2
pwd4 4 X
...
pwd5 3 1

15

Dictionary Reduction

Iter. for Iter. for
MACA, MACB1 MACA, MACB2

Leakage 3 2

pwd1 1 X
pwd2 3 8
pwd3 3 2
pwd4 4 X
...
pwd5 3 1

15

Improving the password conversion

WEP

1999 2003

WPA

2004

WPA2

2018

WPA3

today2020

SAE-PT

16

Looking under the hood

We mostly analyzed Wi-Fi daemons...

... what about their dependencies, like crypto libraries?

def set_point_coordinate(x, fmt, ec):

y = compute_y(x, ec)
if y_sqr = fmt mod 2:

y = ec.p - y
P = create_point(x, y, ec)
return P

def bin2bn(buf, n):
Skip leading 0's
while (buf[0] == 0):

n--
buf++

[...]

We should have caught this in the first analysis!

17

Looking under the hood

We mostly analyzed Wi-Fi daemons...
... what about their dependencies, like crypto libraries?

def set_point_coordinate(x, fmt, ec):

y = compute_y(x, ec)
if y_sqr = fmt mod 2:

y = ec.p - y
P = create_point(x, y, ec)
return P

def bin2bn(buf, n):
Skip leading 0's
while (buf[0] == 0):

n--
buf++

[...]

We should have caught this in the first analysis!

17

Looking under the hood

We mostly analyzed Wi-Fi daemons...
... what about their dependencies, like crypto libraries?

def set_point_coordinate(x, fmt, ec):
y = compute_y(x, ec)
if y_sqr = fmt mod 2:

y = ec.p - y
P = create_point(x, y, ec)
return P

def bin2bn(buf, n):
Skip leading 0's
while (buf[0] == 0):

n--
buf++

[...]

We should have caught this in the first analysis!

17

Looking under the hood

We mostly analyzed Wi-Fi daemons...
... what about their dependencies, like crypto libraries?

def set_point_coordinate(x, fmt, ec):
y = compute_y(x, ec)
if y_sqr = fmt mod 2:

y = ec.p - y
P = create_point(x, y, ec)
return P

def bin2bn(buf, n):
Skip leading 0's
while (buf[0] == 0):

n--
buf++

[...]

We should have caught this in the first analysis!

17

Looking under the hood

We mostly analyzed Wi-Fi daemons...
... what about their dependencies, like crypto libraries?

def set_point_coordinate(x, fmt, ec):
y = compute_y(x, ec)
if y_sqr = fmt mod 2:

y = ec.p - y
P = create_point(x, y, ec)
return P

def bin2bn(buf, n):
Skip leading 0's
while (buf[0] == 0):

n--
buf++

[...]

We should have caught this in the first analysis!

17

Looking under the hood

We mostly analyzed Wi-Fi daemons...
... what about their dependencies, like crypto libraries?

def set_point_coordinate(x, fmt, ec):
y = compute_y(x, ec)
if y_sqr = fmt mod 2:

y = ec.p - y
P = create_point(x, y, ec)
return P

def bin2bn(buf, n):
Skip leading 0's
while (buf[0] == 0):

n--
buf++

[...]

We should have caught this in the first analysis!

17

Looking under the hood

We mostly analyzed Wi-Fi daemons...
... what about their dependencies, like crypto libraries?

def set_point_coordinate(x, fmt, ec):
y = compute_y(x, ec)
if y_sqr = fmt mod 2:

y = ec.p - y
P = create_point(x, y, ec)
return P

def bin2bn(buf, n):
Skip leading 0's
while (buf[0] == 0):

n--
buf++

[...]

We should have caught this in the first analysis!

17

Toward a Better Approach

Computer Aided Cryptography

Multiple areas..
• Design level

• Protocol verification (symbolic /
computational model)

• Functional correctness / efficiency
• Correctness, memory safety, ...

• Implementation security

... with various approaches
• Verifying existing implementations

• Source code level? Binary level?
• Leakage model?

• Generating formally verified binaries

18

Toward a Better Approach

Computer Aided Cryptography

Multiple areas..
• Design level

• Protocol verification (symbolic /
computational model)

• Functional correctness / efficiency
• Correctness, memory safety, ...

• Implementation security

... with various approaches
• Verifying existing implementations

• Source code level? Binary level?
• Leakage model?

• Generating formally verified binaries

18

Toward a Better Approach

Computer Aided Cryptography

Multiple areas..
• Design level

• Protocol verification (symbolic /
computational model)

• Functional correctness / efficiency
• Correctness, memory safety, ...

• Implementation security

... with various approaches
• Verifying existing implementations

• Source code level? Binary level?
• Leakage model?

• Generating formally verified binaries

18

Fixing hostap

wpa_supplicant

event
loop

wpa_cli GUI frontend

driver events

con�guration

driver i/f

WPA
state machine

l2_packets

driver i/f

EAPOL
state machine

EAP
state machine

EAP methods

crypto TLS

kernel network device driver

crypto/
...
crypto.h

crypto_mbedtls.c
crypto_openssl.c
crypto_wolfssl.c
...

19

Fixing hostap

WPA
state machine

EAPOL
state machine

EAP
state machine

EAP methods

crypto

crypto/
...
crypto.h

crypto_mbedtls.c
crypto_openssl.c
crypto_wolfssl.c
...

19

Fixing hostap

WPA
state machine

EAPOL
state machine

EAP
state machine

EAP methods

crypto

crypto/
...
crypto.h

crypto_mbedtls.c
crypto_openssl.c
crypto_wolfssl.c
...

19

Fixing hostap

WPA
state machine

EAPOL
state machine

EAP
state machine

EAP methods

crypto

crypto/
...
crypto.h
crypto_hacl.c
crypto_mbedtls.c
crypto_openssl.c
crypto_wolfssl.c
...

19

Benchmarks

0 0.5 1 1.5 2 2.5 3 3.5
·107

OpenSSL

Hacl*

OpenSSL-noasm

Cycles

SAE
SAE-PT

20

Constant-time Tools & Usability

Many Tools, Presumably Low Adoption

Tool Target Technique

ABPV13 C Formal
Binsec/Rel Binary Symbolic
Blazer Java Formal
BPT17 C Symbolic
CacheAudit Binary Formal
CacheD Trace Symbolic
COCO-CHANNEL Java Symbolic
ctgrind Binary Dynamic
ct-fuzz LLVM Dynamic
ct-verif LLVM Formal
CT-WASM WASM Formal
DATA Binary Dynamic
dudect Binary Statistics

Tool Target Technique

FaCT DSL Formal
FlowTracker LLVM Formal
haybale-pitchfork LLVM Symbolic
KMO12 Binary Formal
MemSan LLVM Dynamic
MicroWalk Binary Dynamic
SC-Eliminator LLVM Formal
SideTrail LLVM Formal
Themis Java Formal
timecop Binary Dynamic
tis-ct C Symbolic
VirtualCert x86 Formal

21

Why are timing attacks still around?

Are timing attacks part of the threat
models of libraries?

F Are developers aware of the threat?
F Do they claim resistance against it?

How do they protect against such
attacks?

F Are they tested/verified? If so, how
often?

Are developers aware of the tools?
F If so, which ones?
F Are they more prone to use a

specific tool ”type”?

Why do we still find textbook issues?
F Are they waiting for specific

features?

Let’s ask them!

22

Why are timing attacks still around?

Are timing attacks part of the threat
models of libraries?

F Are developers aware of the threat?
F Do they claim resistance against it?

How do they protect against such
attacks?

F Are they tested/verified? If so, how
often?

Are developers aware of the tools?
F If so, which ones?
F Are they more prone to use a

specific tool ”type”?

Why do we still find textbook issues?
F Are they waiting for specific

features?

Let’s ask them!

22

Why are timing attacks still around?

Are timing attacks part of the threat
models of libraries?

F Are developers aware of the threat?
F Do they claim resistance against it?

How do they protect against such
attacks?

F Are they tested/verified? If so, how
often?

Are developers aware of the tools?
F If so, which ones?
F Are they more prone to use a

specific tool ”type”?

Why do we still find textbook issues?
F Are they waiting for specific

features?

Let’s ask them!

22

Why are timing attacks still around?

Are timing attacks part of the threat
models of libraries?

F Are developers aware of the threat?
F Do they claim resistance against it?

How do they protect against such
attacks?

F Are they tested/verified? If so, how
often?

Are developers aware of the tools?
F If so, which ones?
F Are they more prone to use a

specific tool ”type”?

Why do we still find textbook issues?
F Are they waiting for specific

features?

Let’s ask them!
22

“They’re not that hard to mitigate”:
What Cryptographic Library Developers Think About Timing Attacks

Jan Jancar1, Marcel Fourné2, Daniel De Almeida Braga3, Mohamed Sabt3,
Peter Schwabe2, Gilles Barthe2, Pierre-Alain Fouque3 and Yasemin Acar2,4

1 2 3 4

23

Survey

1. Participant background

2. Library properties & decisions

3. Tool awareness

4. Tool use

5. Hypothetical tool use

6. Miscellaneous

 27 librairies

OpenSSL, BearSSL, libgcrypt, s2n
(Amazon), RustCrypto, …

 44 valid responses

Various roles (developers,
maintainers, committers, …)

24

Survey

1. Participant background

2. Library properties & decisions

3. Tool awareness

4. Tool use

5. Hypothetical tool use

6. Miscellaneous

 27 librairies

OpenSSL, BearSSL, libgcrypt, s2n
(Amazon), RustCrypto, …

 44 valid responses

Various roles (developers,
maintainers, committers, …)

24

Survey

1. Participant background

2. Library properties & decisions

3. Tool awareness

4. Tool use

5. Hypothetical tool use

6. Miscellaneous

 27 librairies

OpenSSL, BearSSL, libgcrypt, s2n
(Amazon), RustCrypto, …

 44 valid responses

Various roles (developers,
maintainers, committers, …)

24

Survey

1. Participant background

2. Library properties & decisions

3. Tool awareness

4. Tool use

5. Hypothetical tool use

6. Miscellaneous

 27 librairies

OpenSSL, BearSSL, libgcrypt, s2n
(Amazon), RustCrypto, …

 44 valid responses

Various roles (developers,
maintainers, committers, …)

24

Survey

1. Participant background

2. Library properties & decisions

3. Tool awareness

4. Tool use

5. Hypothetical tool use

6. Miscellaneous

 27 librairies

OpenSSL, BearSSL, libgcrypt, s2n
(Amazon), RustCrypto, …

 44 valid responses

Various roles (developers,
maintainers, committers, …)

24

Survey

1. Participant background

2. Library properties & decisions

3. Tool awareness

4. Tool use

5. Hypothetical tool use

6. Miscellaneous

 27 librairies

OpenSSL, BearSSL, libgcrypt, s2n
(Amazon), RustCrypto, …

 44 valid responses

Various roles (developers,
maintainers, committers, …)

24

Survey

1. Participant background

2. Library properties & decisions

3. Tool awareness

4. Tool use

5. Hypothetical tool use

6. Miscellaneous

 27 librairies

OpenSSL, BearSSL, libgcrypt, s2n
(Amazon), RustCrypto, …

 44 valid responses

Various roles (developers,
maintainers, committers, …)

24

Interesting responses

“It was totally obvious for everybody right
from the start that protection against timing
attacks is necessary.”

“I’m very interested in these sorts of tools,
but so far it seems formal analysis tools (at
least where we’ve tried to apply it to
correctness) are not really usable by mere
mortals yet.”

“For many cases there aren’t enough real
world attacks to justify spending time on
preventing timing leaks.”

“They’re not that hard to mitigate, at least
with the compilers I’m using right now.”

25

Leaky pipeline

10
0%

 P
ar

tic
ip

an
ts

 (4
4

)

75
%

 K
no

w
 a

bo
ut

 to
ol

s
(3

3
)

25% Don't know about tools (11)

31.8% Haven't tried to use tools (14)
43

.1
%

 T
rie

d
to

us
e

to
ol

s
(1

9
)

38
.6

%
U

se
 to

ol
s

(1
7

)

4.5% Don't use tools (2)

26

Recommendations

Tool developers
• Make usable tools
• Promote them

Crypto developers
• Use the tools
• Annotate your code

Complier writers
• Support secret types
• Give more control to developers

Standardization bodies
• Encourage to use tools and give
recommendations

• Require constant-time code

27

• PAKEs are spreading
• They are particularly prone to side-channel attacks
• Computer-aided cryptography is nice
• We need more usable tools

28

Thank you for your attention!

https://gitlab.inria.fr/ddealmei/
@ daniel.de-almeida-braga@irisa.fr

29

https://gitlab.inria.fr/ddealmei/
daniel.de-almeida-braga@irisa.fr

	Me, Myself and I
	Context and Motivations
	Side Channels in Dragonfly/SAE (WPA3)
	Constant-time Tools & Usability

