
Dragonblood is Still Leaking: Practical Cache-based
Side-Channel in the Wild

Daniel De Almeida Braga
Pierre-Alain Fouque
Mohamed Sabt
CORGIS - March, 15th 2021

1

Context and Motivations

Client Access Point


WEP

1999 2003

WPA

2004

WPA2

2018

WPA3

today

2

Context and Motivations

Client Access Point


WEP

1999 2003

WPA

2004

WPA2

2018

WPA3

today

2

Context and Motivations

Client Access Point


WEP

1999 2003

WPA

2004

WPA2

2018

WPA3

today

2

Context and Motivations

Client Access Point


WEP

1999 2003

WPA

2004

WPA2

2018

WPA3

today

2

Context and Motivations

Client Access Point


WEP

1999 2003

WPA

2004

WPA2

2018

WPA3

today

2

Offline dictionary

attack

Context and Motivations

Client Access Point


WEP

1999 2003

WPA

2004

WPA2

2018

WPA3

today

2

Offline dictionary

attack
KR
AC
K a
tta
ck

Context and Motivations

Client Access Point


WEP

1999 2003

WPA

2004

WPA2

2018

WPA3

today

2

+ More secure
+ Based on a PAKE (Dragonfly1)

1 D. Harkins, 2015, Dragonfly Key Exchange, RFC 7664

PAKE: Password Authenticated Key Exchange

• PAKE protocols aim to combine the Key Exchange and authentication parts
• Password is used to:

• Authenticate the user
• Derive strong cryptographic material

• No offline dictionary attack

3

Context and Motivations

WEP

1999 2003

WPA

2004

WPA2

2018

WPA3

today2019

Dragonblood1 attacks

4

+ More secure
+ Based on a PAKE (Dragonfly)

1 M. Vanhoef et al. Dragonblood: Analyzing the Dragonfly Handshake of WPA3 and EAP-pwd. In IEEE S&P. 2020

Side Channel Attacks

def processPassword(pwd):
if "a" in pwd:

res = long_processing(pwd)
else:

res = short_processing(pwd)
return res

Gain information through timing:

� 0.5 seconds⇒ no a

� 10 seconds⇒ a

def processPassword2(pwd):
if "a" in pwd:

res = long_processing(pwd)
else:

res = long_processing2(pwd)
return res

Gain information execution flow:
• Execute long_processing⇒ a
• Else, no a in pwd

5

Side Channel Attacks

def processPassword(pwd):
if "a" in pwd:

res = long_processing(pwd)
else:

res = short_processing(pwd)
return res

Gain information through timing:

� 0.5 seconds⇒ no a

� 10 seconds⇒ a

def processPassword2(pwd):
if "a" in pwd:

res = long_processing(pwd)
else:

res = long_processing2(pwd)
return res

Gain information execution flow:
• Execute long_processing⇒ a
• Else, no a in pwd

5

Side Channel Attacks

def processPassword(pwd):
if "a" in pwd:

res = long_processing(pwd)
else:

res = short_processing(pwd)
return res

Gain information through timing:

� 0.5 seconds⇒ no a

� 10 seconds⇒ a

def processPassword2(pwd):
if "a" in pwd:

res = long_processing(pwd)
else:

res = long_processing2(pwd)
return res

Gain information execution flow:
• Execute long_processing⇒ a
• Else, no a in pwd

5

Side Channel Attacks

def processPassword(pwd):
if "a" in pwd:

res = long_processing(pwd)
else:

res = short_processing(pwd)
return res

Gain information through timing:

� 0.5 seconds⇒ no a

� 10 seconds⇒ a

def processPassword2(pwd):
if "a" in pwd:

res = long_processing(pwd)
else:

res = long_processing2(pwd)
return res

Gain information execution flow:
• Execute long_processing⇒ a
• Else, no a in pwd

5

Contributions

1. Show that current countermeasures are not sufficient for cache-based
side-channel

2. Mount an offline dictionary attack to recover the password
3. Provide a PoC on Real-World-like scenarios (IWD and FreeRadius)

4. Raise awareness on how practical these attacks are

6

Contributions

1. Show that current countermeasures are not sufficient for cache-based
side-channel

2. Mount an offline dictionary attack to recover the password

3. Provide a PoC on Real-World-like scenarios (IWD and FreeRadius)

4. Raise awareness on how practical these attacks are

6

Contributions

1. Show that current countermeasures are not sufficient for cache-based
side-channel

2. Mount an offline dictionary attack to recover the password
3. Provide a PoC on Real-World-like scenarios (IWD and FreeRadius)

4. Raise awareness on how practical these attacks are

6

Contributions

1. Show that current countermeasures are not sufficient for cache-based
side-channel

2. Mount an offline dictionary attack to recover the password
3. Provide a PoC on Real-World-like scenarios (IWD and FreeRadius)

4. Raise awareness on how practical these attacks are

6

Our main result

Unintended information leakageFLUSH+RELOAD1 and PDA2

A cache based side channel attack

let us extract information during

the password conversion with

an offline dictionary attack

7

Our main result

Unintended information leakage

FLUSH+RELOAD1 and PDA2

A cache based side channel attack

let us extract information during

the password conversion with

an offline dictionary attack

7

Our main result

Unintended information leakageFLUSH+RELOAD1 and PDA2

A cache based side channel attack

let us extract information during

the password conversion with

an offline dictionary attack

71 Y. Yarom et al. Flush+Reload: a High Resolution, Low Noise, L3 Cache Side-Channel Attack. In USENIX Security Symposium. 2014.
2 T. Allan et al. Amplifying side channels through performance degradation. In ACSAC. 2016

FLUSH+RELOAD1

flush
Execute instruction reload (fast)reload (slow)

CPU cache

@kdf

Victim address space

@kdf

Attacker address space

1. Maps the victim’s address space

2. Flush the instruction we monitor
3. See how much time it takes to reload

8
1 Y. Yarom et al. Flush+Reload: a High Resolution, Low Noise, L3 Cache Side-Channel Attack. In USENIX Security Symposium. 2014.

FLUSH+RELOAD1

flush

Execute instruction reload (fast)reload (slow)

CPU cache

@kdf

Victim address space

@kdf

Attacker address space

1. Maps the victim’s address space
2. Flush the instruction we monitor

3. See how much time it takes to reload

8
1 Y. Yarom et al. Flush+Reload: a High Resolution, Low Noise, L3 Cache Side-Channel Attack. In USENIX Security Symposium. 2014.

FLUSH+RELOAD1

flush
Execute instruction reload (fast)reload (slow)

CPU cache

@kdf

Victim address space

@kdf

Attacker address space

1. Maps the victim’s address space
2. Flush the instruction we monitor
3. See how much time it takes to reload

8
1 Y. Yarom et al. Flush+Reload: a High Resolution, Low Noise, L3 Cache Side-Channel Attack. In USENIX Security Symposium. 2014.

FLUSH+RELOAD1

flush

Execute instruction

reload (fast)reload (slow)

CPU cache

@kdf

Victim address space

@kdf

Attacker address space

1. Maps the victim’s address space
2. Flush the instruction we monitor
3. See how much time it takes to reload

8
1 Y. Yarom et al. Flush+Reload: a High Resolution, Low Noise, L3 Cache Side-Channel Attack. In USENIX Security Symposium. 2014.

FLUSH+RELOAD1

flush

Execute instruction reload (fast)

reload (slow)

CPU cache

@kdf

Victim address space

@kdf

Attacker address space

1. Maps the victim’s address space
2. Flush the instruction we monitor
3. See how much time it takes to reload

8
1 Y. Yarom et al. Flush+Reload: a High Resolution, Low Noise, L3 Cache Side-Channel Attack. In USENIX Security Symposium. 2014.

FLUSH+RELOAD1

flush
Execute instruction reload (fast)

reload (slow)

CPU cache

@kdf

Victim address space

@kdf

Attacker address space

1. Maps the victim’s address space
2. Flush the instruction we monitor
3. See how much time it takes to reload

8
1 Y. Yarom et al. Flush+Reload: a High Resolution, Low Noise, L3 Cache Side-Channel Attack. In USENIX Security Symposium. 2014.

Our main result

Unintended information leakageFLUSH+RELOAD and PDA

A cache based side channel attack

let us extract information during

the password conversion with

an offline dictionary attack

Password to point on an Elliptic Curve Passive attacker can eliminate
wrong passwords from a list

9

Our main result

Unintended information leakageFLUSH+RELOAD and PDA

A cache based side channel attack

let us extract information during

the password conversion with

an offline dictionary attack

Password to point on an Elliptic Curve

Passive attacker can eliminate
wrong passwords from a list

9

Our main result

Unintended information leakageFLUSH+RELOAD and PDA

A cache based side channel attack

let us extract information during

the password conversion with

an offline dictionary attack

Password to point on an Elliptic Curve Passive attacker can eliminate
wrong passwords from a list 9

Dragonfly Protocol Overview

A and B agree on a prime order group E(Fp), of order q

Dragonfly

Alice (A) Bob (B)
P← p2g(pwd,A,B) P← p2g(pwd,A,B)

Commit

Key derivation Key derivation

Confirmation

10

Dragonfly Protocol Overview

A and B agree on a prime order group E(Fp), of order q

Dragonfly

Alice (A) Bob (B)
P← p2g(pwd,A,B) P← p2g(pwd,A,B)

Commit

Key derivation Key derivation

Confirmation

10

Dragonfly - Password Conversion (EC)

HuntingAndPecking(pwd, A, B, k = 40)

1 : found, i = false, 1
2 : while not found or i < k :

3 : seed = Hash(A,B,pwd, i)
4 : xcand = KDF(seed, label)
5 : if xcand is a point’s coordinate :

6 : if not found :

7 : found, x, seedx = true, xcand, seed
8 : pwd = get_random()

9 : i = i+ 1
10 : y = set_compressed_point_coordinate(x, seedx)
11 : return (x, y) 11

Dragonfly - Password Conversion (EC)

HuntingAndPecking(pwd, A, B, k = 40)

1 : found, i = false, 1
2 : while not found or i < k :

3 : seed = Hash(A,B,pwd, i)
4 : xcand = KDF(seed, label)
5 : if xcand is a point’s coordinate :

6 : if not found :

7 : found, x, seedx = true, xcand, seed
8 : pwd = get_random()

9 : i = i+ 1
10 : y = set_compressed_point_coordinate(x, seedx)
11 : return (x, y) 11

← : new iteration

Dragonfly - Password Conversion (EC)

HuntingAndPecking(pwd, A, B, k = 40)

1 : found, i = false, 1
2 : while not found or i < k :

3 : seed = Hash(A,B,pwd, i)
4 : xcand = KDF(seed, label)
5 : if xcand is a point’s coordinate :

6 : if not found :

7 : found, x, seedx = true, xcand, seed
8 : pwd = get_random()

9 : i = i+ 1
10 : y = set_compressed_point_coordinate(x, seedx)
11 : return (x, y) 11

← : new iteration

← : successful conversion

Dragonfly - Password Conversion (EC)

HuntingAndPecking(pwd, A, B, k = 40)

1 : found, i = false, 1
2 : while not found or i < k :

3 : seed = Hash(A,B,pwd, i)
4 : xcand = KDF(seed, label)
5 : if xcand is a point’s coordinate :

6 : if not found :

7 : found, x, seedx = true, xcand, seed
8 : pwd = get_random()

9 : i = i+ 1
10 : y = set_compressed_point_coordinate(x, seedx)
11 : return (x, y) 11

← : new iteration

← : successful conversion

→ mask = get_random()
do_blind_verif(xcand, mask)

Dragonfly - Password Conversion (EC)

HuntingAndPecking(pwd, A, B, k = 40)

1 : found, i = false, 1
2 : while not found or i < k :

3 : seed = Hash(A,B,pwd, i)
4 : xcand = KDF(seed, label)
5 : if xcand is a point’s coordinate :

6 : if not found :

7 : found, x, seedx = true, xcand, seed
8 : pwd = get_random()

9 : i = i+ 1
10 : y = set_compressed_point_coordinate(x, seedx)
11 : return (x, y) 11

← : new iteration

← : successful conversion

→ mask = get_random()
do_blind_verif(xcand, mask)← PDA

Dictionary Reduction

Iter. required
for A, B

Iter. required
for A, B’

Leakage 3

2

password1

1 X

password2

3 8

password3

3 2

password4

4 X

...

... ...

passwordn

3 1

12

Dictionary Reduction

Iter. required
for A, B

Iter. required
for A, B’

Leakage 3

2

password1 1

X

password2 3

8

password3 3

2

password4 4

X

... ...

...

passwordn 3

1

12

Dictionary Reduction

Iter. required
for A, B

Iter. required
for A, B’

Leakage 3

2

password1 1

X

password2 3

8

password3 3

2

password4 4

X

... ...

...

passwordn 3

1

12

Dictionary Reduction

Iter. required
for A, B

Iter. required
for A, B’

Leakage 3 2
password1 1

X

password2 3

8

password3 3

2

password4 4

X

... ...

...

passwordn 3

1

12

Dictionary Reduction

Iter. required
for A, B

Iter. required
for A, B’

Leakage 3 2
password1 1 X
password2 3 8
password3 3 2
password4 4 X
...
passwordn 3 1

12

Dictionary Reduction

Iter. required
for A, B

Iter. required
for A, B’

Leakage 3 2
password1 1 X
password2 3 8
password3 3 2
password4 4 X
...
passwordn 3 1

12

Attacker Model

Client c0:85:9b

13

Attacker Model

Client c0:85:9b

13

Attacker Model

Client c0:85:9bd8:a3:21

13

Attacker Model

Client c0:85:9be9:5d:bf

13

Core Idea

AP

Victim

WPA3 auth

Spy process
Trace parsing

Leaked information

Offline dictionary
attack

Remaining passwords

14

Core Idea

Rogue AP

Victim

WPA3 auth

Spy process

Trace parsing

Leaked information

Offline dictionary
attack

Remaining passwords

14

Core Idea

Rogue AP

Victim

WPA3 auth

Spy process
Trace parsing

Leaked information

Offline dictionary
attack

Remaining passwords

14

Core Idea

Rogue AP

Victim

WPA3 auth

Spy process
Trace parsing

Leaked information

Offline dictionary
attack

Remaining passwords

14

Core Idea

Rogue AP

Victim

WPA3 auth

Spy process
Trace parsing

Leaked information

Offline dictionary
attack

Remaining passwords

14

Core Idea

Rogue AP

Victim

WPA3 auth

Spy process
Trace parsing

Leaked information

Offline dictionary
attack

Remaining passwords

14

Practical Results

• Need multiple measurement to achieve high accuracy

• Very reliable results with only 10 measurements per MAC address
• More than 1 bit of information for each MAC
• Original attack: 20 measurement for exactly one bit of information

15

Practical Results

• Need multiple measurement to achieve high accuracy
• Very reliable results with only 10 measurements per MAC address

• More than 1 bit of information for each MAC
• Original attack: 20 measurement for exactly one bit of information

15

Practical Results

• Need multiple measurement to achieve high accuracy
• Very reliable results with only 10 measurements per MAC address
• More than 1 bit of information for each MAC

• Original attack: 20 measurement for exactly one bit of information

15

Practical Results

• Need multiple measurement to achieve high accuracy
• Very reliable results with only 10 measurements per MAC address
• More than 1 bit of information for each MAC
• Original attack: 20 measurement for exactly one bit of information

15

Practical Results

• Need multiple measurement to achieve high accuracy
• Very reliable results with only 10 measurements per MAC address
• More than 1 bit of information for each MAC
• Original attack: 20 measurement for exactly one bit of information

15

Practical Results

Dict. size Cost on AWS Avg traces for
full reduction

Rockyou 1.4 · 107 0, 00037 € 16
CrackStation 3.5 · 107 0, 0011 € 17
HaveIBeenPwned 5.5 · 108 0,014 € 20
8 characters 4.6 · 1014 11848, 2 € 32

Number of the Required Traces / Cost to Prune all Wrong Passwords

16

Practical Results

Dict. size Cost on AWS Avg traces for
full reduction

Rockyou 1.4 · 107 0, 00037 € 16
CrackStation 3.5 · 107 0, 0011 € 17
HaveIBeenPwned 5.5 · 108 0,014 € 20
8 characters 4.6 · 1014 11848, 2 € 32

Number of the Required Traces / Cost to Prune all Wrong Passwords

16

Practical Results

Dict. size Cost on AWS Avg traces for
full reduction

Rockyou 1.4 · 107 0, 00037 € 16
CrackStation 3.5 · 107 0, 0011 € 17
HaveIBeenPwned 5.5 · 108 0,014 € 20
8 characters 4.6 · 1014 11848, 2 € 32

Number of the Required Traces / Cost to Prune all Wrong Passwords

16

Responsible Disclosure

IWD v1.9 3

FreeRadius to be fixed in 3.0.22

17

Additional vulnerability (found after the paper submission)

HuntingAndPecking(pwd, A, B, k)

1 : found, i = false, 1
2 : while not found or i < k :

3 : seed = Hash(A,B,pwd, i)
4 : xcand = KDF(seed, label)
5 : if xcand is a point’s coordinate :

6 : if not found :

7 : found, x, save_seed = true, xcand, seed
8 : i = i+ 1
9 : y = set_compressed_point_coordinate(x, save_seed)
10 : return (x, y)

18

Additional vulnerability (found after the paper submission)

HuntingAndPecking(pwd, A, B, k)

1 : found, i = false, 1
2 : while not found or i < k :

3 : seed = Hash(A,B,pwd, i)
4 : xcand = KDF(seed, label)
5 : if xcand is a point’s coordinate :

6 : if not found :

7 : found, x, save_seed = true, xcand, seed
8 : i = i+ 1
9 : y = set_compressed_point_coordinate(x, save_seed)
10 : return (x, y)

18

← : leaks the seed’s parity

Dictionary Reduction

seed’s parity
for A, B

seed’s parity
for A, B’

Leakage 0

1

password1

1 X

password2

0 0

password3

0 1

password4

1 X

...

... ...

passwordn

0 0

19

Dictionary Reduction

seed’s parity
for A, B

seed’s parity
for A, B’

Leakage 0

1

password1 1

X

password2 0

0

password3 0

1

password4 1

X

... ...

...

passwordn 0

0

19

Dictionary Reduction

seed’s parity
for A, B

seed’s parity
for A, B’

Leakage 0

1

password1 1

X

password2 0

0

password3 0

1

password4 1

X

... ...

...

passwordn 0

0

19

Dictionary Reduction

seed’s parity
for A, B

seed’s parity
for A, B’

Leakage 0 1
password1 1

X

password2 0

0

password3 0

1

password4 1

X

... ...

...

passwordn 0

0

19

Dictionary Reduction

seed’s parity
for A, B

seed’s parity
for A, B’

Leakage 0 1
password1 1 X
password2 0 0
password3 0 1
password4 1 X
...
passwordn 0 0

19

Dictionary Reduction

seed’s parity
for A, B

seed’s parity
for A, B’

Leakage 0 1
password1 1 X
password2 0 0
password3 0 1
password4 1 X
...
passwordn 0 0

19

Additional vulnerability (found after the paper submission)

HuntingAndPecking(pwd, A, B, k)

1 : found, i = false, 1
2 : while not found or i < k :

3 : seed = Hash(A,B,pwd, i)
4 : xcand = KDF(seed, label)
5 : if xcand is a point’s coordinate :

6 : if not found :

7 : found, x, seedx = true, xcand, seed
8 : i = i+ 1
9 : y = set_compressed_point_coordinate(x, seedx)
10 : return (x, y)

Underlying crypto library call 20

← : leaks the seed’s parity

Future / Current work

• Find / adapt tools to perform thorough analysis of WPA3
• Complete/Sound tools do not scale well
• Scalable tools are (often) not complete

• Analyze various implementations
• Patch remaining vulnerabilities
• Enjoy secure WPA3 implementations

21

Questions?

22

Inclusive CPU cache

core corecore core

L1
data

L1
inst

L1
data

L1
inst

L1
data

L1
inst

L1
data

L1
inst

L2 L2 L2 L2

LLC

Inclusive cache

Inclusive CPU cache

core corecore core

L1
data

L1
inst

L1
data

L1
inst

L1
data

L1
inst

L1
data

L1
inst

L2 L2 L2 L2

LLC

L1 L1 L1 L1

L2

Inclusive cache

Dragonfly workflow

Alice Bob

Generate random rB, mB
sB = (rB+mB) mod q
QB = -mBP

Check sB and QB
K = rA(sBP+QB)
kck | mk = KDF(K | label2)
tr = sA | QA | sB | QB
cA = HMACkck(tr)

Check sA and QA
K = rB(sAP+QA)
kck | mk = KDF(K | label2)
tr = sB | QB | sA | QA
cB = HMACkck(tr)

Verify cB Verify cA

Commit(sA, QA) Commit(sB, QB)

Generate random rA, mA
sA = (rA+mA) mod q
QA = -mAP

Confirm(cA) Confirm(cB)

P = pwd2point(pwd, A, B) P = pwd2point(pwd, A, B)

Commit
step

Verification
step

Is (x, y) a point on a curve ?

Need to check if x3 + ax+ b is a a quadratic residue on Fp

is_x_on_curve(x)

1 : y_sqr = x3 + ax+ b
2 : return legendre_symbol(y_sqr,p) == 1

Is (x, y) a point on a curve ?

Need to check if x3 + ax+ b is a a quadratic residue on Fp

is_x_on_curve(x, qr, nqr)

1 : mask = get_random()

2 : y_sqr = x3 + ax+ b
3 : blind_sqr = y_sqr×mask2

4 : if mask is odd :

5 : blind_sqr = blind_sqr× qr
6 : return legendre_symbol(blind_sqr) == −1
7 : else
8 : blind_sqr = blind_sqr× nqr
9 : return legendre_symbol(blind_sqr) == 1

	Appendix

