
Dragonblood is Still Leaking: Practical Cache-based
Side-Channel in the Wild

Daniel De Almeida Braga
Pierre-Alain Fouque
Mohamed Sabt
CORGIS - March, 15th 2021

1



Context and Motivations

Client Access Point


WEP

1999 2003

WPA

2004

WPA2

2018

WPA3

today

2



Context and Motivations

Client Access Point


WEP

1999 2003

WPA

2004

WPA2

2018

WPA3

today

2



Context and Motivations

Client Access Point


WEP

1999 2003

WPA

2004

WPA2

2018

WPA3

today

2



Context and Motivations

Client Access Point


WEP

1999 2003

WPA

2004

WPA2

2018

WPA3

today

2



Context and Motivations

Client Access Point


WEP

1999 2003

WPA

2004

WPA2

2018

WPA3

today

2

Offline dictionary

attack



Context and Motivations

Client Access Point


WEP

1999 2003

WPA

2004

WPA2

2018

WPA3

today

2

Offline dictionary

attack
KR
AC
K a
tta
ck



Context and Motivations

Client Access Point


WEP

1999 2003

WPA

2004

WPA2

2018

WPA3

today

2

+ More secure
+ Based on a PAKE (Dragonfly1)

1 D. Harkins, 2015, Dragonfly Key Exchange, RFC 7664



PAKE: Password Authenticated Key Exchange

• PAKE protocols aim to combine the Key Exchange and authentication parts
• Password is used to:

• Authenticate the user
• Derive strong cryptographic material

• No offline dictionary attack
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+ More secure
+ Based on a PAKE (Dragonfly)

1 M. Vanhoef et al. Dragonblood: Analyzing the Dragonfly Handshake of WPA3 and EAP-pwd. In IEEE S&P. 2020



Side Channel Attacks

def processPassword(pwd):
if "a" in pwd:

res = long_processing(pwd)
else:

res = short_processing(pwd)
return res

Gain information through timing:

� 0.5 seconds⇒ no a

� 10 seconds⇒ a

def processPassword2(pwd):
if "a" in pwd:

res = long_processing(pwd)
else:

res = long_processing2(pwd)
return res

Gain information execution flow:
• Execute long_processing⇒ a
• Else, no a in pwd
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Contributions

1. Show that current countermeasures are not sufficient for cache-based
side-channel

2. Mount an offline dictionary attack to recover the password
3. Provide a PoC on Real-World-like scenarios (IWD and FreeRadius)

4. Raise awareness on how practical these attacks are
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Our main result

Unintended information leakageFLUSH+RELOAD1 and PDA2

A cache based side channel attack

let us extract information during

the password conversion with

an offline dictionary attack
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A cache based side channel attack

let us extract information during

the password conversion with

an offline dictionary attack

71 Y. Yarom et al. Flush+Reload: a High Resolution, Low Noise, L3 Cache Side-Channel Attack. In USENIX Security Symposium. 2014.
2 T. Allan et al. Amplifying side channels through performance degradation. In ACSAC. 2016



FLUSH+RELOAD1

flush
Execute instruction reload (fast)reload (slow)

CPU cache

@kdf

Victim address space

@kdf

Attacker address space

1. Maps the victim’s address space

2. Flush the instruction we monitor
3. See how much time it takes to reload

8
1 Y. Yarom et al. Flush+Reload: a High Resolution, Low Noise, L3 Cache Side-Channel Attack. In USENIX Security Symposium. 2014.
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Dragonfly Protocol Overview

A and B agree on a prime order group E(Fp), of order q

Dragonfly

Alice (A) Bob (B)
P← p2g(pwd,A,B) P← p2g(pwd,A,B)

Commit

Key derivation Key derivation

Confirmation
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Dragonfly - Password Conversion (EC)

HuntingAndPecking(pwd, A, B, k = 40)

1 : found, i = false, 1
2 : while not found or i < k :

3 : seed = Hash(A,B,pwd, i)
4 : xcand = KDF(seed, label)
5 : if xcand is a point’s coordinate :

6 : if not found :

7 : found, x, seedx = true, xcand, seed
8 : pwd = get_random()

9 : i = i+ 1
10 : y = set_compressed_point_coordinate(x, seedx)
11 : return (x, y) 11



Dragonfly - Password Conversion (EC)

HuntingAndPecking(pwd, A, B, k = 40)

1 : found, i = false, 1
2 : while not found or i < k :

3 : seed = Hash(A,B,pwd, i)
4 : xcand = KDF(seed, label)
5 : if xcand is a point’s coordinate :

6 : if not found :

7 : found, x, seedx = true, xcand, seed
8 : pwd = get_random()

9 : i = i+ 1
10 : y = set_compressed_point_coordinate(x, seedx)
11 : return (x, y) 11

← : new iteration



Dragonfly - Password Conversion (EC)

HuntingAndPecking(pwd, A, B, k = 40)

1 : found, i = false, 1
2 : while not found or i < k :

3 : seed = Hash(A,B,pwd, i)
4 : xcand = KDF(seed, label)
5 : if xcand is a point’s coordinate :

6 : if not found :

7 : found, x, seedx = true, xcand, seed
8 : pwd = get_random()

9 : i = i+ 1
10 : y = set_compressed_point_coordinate(x, seedx)
11 : return (x, y) 11

← : new iteration

← : successful conversion



Dragonfly - Password Conversion (EC)

HuntingAndPecking(pwd, A, B, k = 40)

1 : found, i = false, 1
2 : while not found or i < k :

3 : seed = Hash(A,B,pwd, i)
4 : xcand = KDF(seed, label)
5 : if xcand is a point’s coordinate :

6 : if not found :

7 : found, x, seedx = true, xcand, seed
8 : pwd = get_random()

9 : i = i+ 1
10 : y = set_compressed_point_coordinate(x, seedx)
11 : return (x, y) 11

← : new iteration

← : successful conversion

→ mask = get_random()
do_blind_verif(xcand, mask)



Dragonfly - Password Conversion (EC)

HuntingAndPecking(pwd, A, B, k = 40)

1 : found, i = false, 1
2 : while not found or i < k :

3 : seed = Hash(A,B,pwd, i)
4 : xcand = KDF(seed, label)
5 : if xcand is a point’s coordinate :

6 : if not found :

7 : found, x, seedx = true, xcand, seed
8 : pwd = get_random()

9 : i = i+ 1
10 : y = set_compressed_point_coordinate(x, seedx)
11 : return (x, y) 11

← : new iteration

← : successful conversion

→ mask = get_random()
do_blind_verif(xcand, mask)← PDA
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Attacker Model

Client c0:85:9b
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Attacker Model

Client c0:85:9bd8:a3:21
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Attacker Model

Client c0:85:9be9:5d:bf
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Core Idea
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WPA3 auth

Spy process
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Remaining passwords
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Practical Results

• Need multiple measurement to achieve high accuracy

• Very reliable results with only 10 measurements per MAC address
• More than 1 bit of information for each MAC
• Original attack: 20 measurement for exactly one bit of information
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Practical Results

Dict. size Cost on AWS Avg traces for
full reduction

Rockyou 1.4 · 107 0, 00037 € 16
CrackStation 3.5 · 107 0, 0011 € 17
HaveIBeenPwned 5.5 · 108 0,014 € 20
8 characters 4.6 · 1014 11848, 2 € 32

Number of the Required Traces / Cost to Prune all Wrong Passwords
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Responsible Disclosure

IWD v1.9 3

FreeRadius to be fixed in 3.0.22
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Additional vulnerability (found after the paper submission)

HuntingAndPecking(pwd, A, B, k)

1 : found, i = false, 1
2 : while not found or i < k :

3 : seed = Hash(A,B,pwd, i)
4 : xcand = KDF(seed, label)
5 : if xcand is a point’s coordinate :

6 : if not found :

7 : found, x, save_seed = true, xcand, seed
8 : i = i+ 1
9 : y = set_compressed_point_coordinate(x, save_seed)
10 : return (x, y)
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← : leaks the seed’s parity



Dictionary Reduction
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Additional vulnerability (found after the paper submission)

HuntingAndPecking(pwd, A, B, k)

1 : found, i = false, 1
2 : while not found or i < k :

3 : seed = Hash(A,B,pwd, i)
4 : xcand = KDF(seed, label)
5 : if xcand is a point’s coordinate :

6 : if not found :

7 : found, x, seedx = true, xcand, seed
8 : i = i+ 1
9 : y = set_compressed_point_coordinate(x, seedx)
10 : return (x, y)

Underlying crypto library call 20

← : leaks the seed’s parity



Future / Current work

• Find / adapt tools to perform thorough analysis of WPA3
• Complete/Sound tools do not scale well
• Scalable tools are (often) not complete

• Analyze various implementations
• Patch remaining vulnerabilities
• Enjoy secure WPA3 implementations
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Questions?
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Dragonfly workflow

Alice Bob

Generate random rB, mB
sB = (rB+mB) mod q
QB = -mBP

Check sB and QB
K = rA(sBP+QB)
kck | mk = KDF(K | label2)
tr = sA | QA | sB | QB
cA = HMACkck(tr)

Check sA and QA
K = rB(sAP+QA)
kck | mk = KDF(K | label2)
tr = sB | QB | sA | QA
cB = HMACkck(tr)

Verify cB Verify cA

Commit(sA, QA) Commit(sB, QB)

Generate random rA, mA 
sA = (rA+mA) mod q
QA = -mAP

Confirm(cA) Confirm(cB)

P = pwd2point(pwd, A, B) P = pwd2point(pwd, A, B)

Commit
step

Verification
step



Is (x, y) a point on a curve ?

Need to check if x3 + ax+ b is a a quadratic residue on Fp

is_x_on_curve(x)

1 : y_sqr = x3 + ax+ b
2 : return legendre_symbol(y_sqr,p) == 1



Is (x, y) a point on a curve ?

Need to check if x3 + ax+ b is a a quadratic residue on Fp

is_x_on_curve(x, qr, nqr)

1 : mask = get_random()

2 : y_sqr = x3 + ax+ b
3 : blind_sqr = y_sqr×mask2

4 : if mask is odd :

5 : blind_sqr = blind_sqr× qr
6 : return legendre_symbol(blind_sqr) == −1
7 : else
8 : blind_sqr = blind_sqr× nqr
9 : return legendre_symbol(blind_sqr) == 1
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