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Context



The smart card world
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The smart card world

...
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SCP (Secure Communication Protocol)

APDU req

APDU resp

• Establish a secure session between a card and an Off-Card Entity
• 2-steps protocol: Key Exchange + Communication
• SCP10 relies on a Public Key Infrastructure:

• Both the card and off-card entity have a key pair
• They use each other public key to encrypt/verify messages
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Key Exchange Modes

CardOCE

Manage Security Environment
Applet Selection

(a) Key Transport mode

(b) Key Agreement mode
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Our contributions

Our contributions:

1. Abuse blurs and flaws in the RSA encryption in Key Transport
2. Recovered session keys by two independent means

• In less than a second with the first attack
• In an average of 2h30 for the second

3. Exploit a design flaw to forge a certificate, signed by the card
4. Implement a (semi-)compliant version of SCP10 as an applet
5. Propose a secure implementation, with an estimation of the corresponding

overhead

However, we did not:

× Attack real cards (no implementation in the wild)
× Try to exploit weakness in the symmetric encryption
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Our Threat Model

Our attackers can:

X Initiate an SCP10 session with a card
X Intercept, read and modify plaintext message transmitted between a legitimate

Off-Card Entity and the card
X Measure the time needed by the card to respond

They cannot:

× Have physical access to the card
× Break the cryptographic primitives
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Deterministic RSA Padding



Perform Security Operation

Perform Security Operation APDU:

M: params︸ ︷︷ ︸
3 bytes

|| CRT︸︷︷︸
[22,42] bytes

[|| CRT ...]

CRT: header︸ ︷︷ ︸
[6,8] fixed bytes

|| key︸︷︷︸
[16,24] bytes

[|| 91 08 iv︸︷︷︸
8 bytes

]

EM: 0002 || FF..FF || 00︸ ︷︷ ︸
128−len(M)−3 bytes

|| M

→ Hybrid padding (mixing EME and EMSA)

⇒ Only few unknown bytes (compared to the modulus size)
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Coppersmith’s Low Exponent Attack

Recover the message if the unknown part is small enough: we need x ≤ n 1
e

Assuming the card is using:

• A 1024 bits modulus
• A small public exponent1(e = 3)

We can recover up to
⌈

log2(n 1
3 )

⌉
= 341 bits (≈ 42 bytes)

• An encryption key: 16-24 unknown bytes
• An integrity key (with IV): 26-34 unknown bytes

1

European Payments Council. Guidelines on cryptographic algorithms usage and key management. epc342-08,
2018
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In practice...

• Recover the message in 0.35s on average for a 128 bits key
⇒ on-the-fly attack possible

• Passive interception only
• Only works for Key Transport

⇒ Need a big enough public exponent, or random padding

B Bigger RSA modulus makes the attack easier

B ”Classic” PKCS#1v1.5 padding may not be a valid solution...
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Padding Oracle



Bleichenbacher’s attack

Abusing Perform Security Operation:

• Anybody can send this APDU (no authentication before)

• 3 steps on card: decryption → verification → TLV parsing
• Unique error code but no mention of constant time
• Constant time verification is hard, even harder with TLV parsing

Authentication via challenge

        Manage session  / certificate verification

Key Transport Perform Security Operation

Response

Exploit  format
oracle
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In practice...

• Attack possible with some additional analysis

• Large number of query needed
• Average: 28000 queries ≈ 2h30
• Can be reduced by increasing brute force

• No on-the-fly attack: message collection for future decryption

⇒ Need robust RSA padding (OAEP would solve both problems)
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Key Reuse



RSA Key Reuse

Design flaw:

• Same RSA key for Key Transport and Key Agreement
• Same RSA key for confidentiality and authentication

⇒ Less storage, processing and complexity but no key isolation

Consequences:

• Valid signature forgery using Bleichenbacher’s attack
• On average 74838 queries ≈ 7h

• Certificate forgery, signed by the card ⇒ card impersonation in all future sessions
• In case of shared CA, a single forgery may allow impersonating on a large scale

⇒ Need key isolation
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Secure Implementation



Major countermeasures

• Key isolation
• Significant overhead during certificate verification
• No need to repeat it at each session

• RSA-OAEP
• Negligible overhead (≈ 0.01s)

• Enforce public exponent e = 65537
• Negligible overhead
• Not mandatory when using OAEP
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Conclusion



Sum-up

• We tried to apply well known attack to the smart cards world
• Successfully performed two attacks speculating on the implementation

• We believe our assumption to be reasonable giving past attacks
• Key isolation is not implementation dependent

• Suggest mitigations:
• Easy to add in the specification
• Reasonable overhead

• GlobalPlatform released a new standard version based on our recommendations
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Thank you for your attention !
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