
The Long and Winding Path to Secure Implementation of
GlobalPlatform SCP10

Daniel De Almeida Braga
Pierre-Alain Fouque
Mohamed Sabt
TCHES 2020

1

Overview

• Context
• Deterministic RSA Padding
• Padding Oracle
• Key Reuse
• Secure Implementation
• Conclusion

2

Context

The smart card world

3

The smart card world

...

3

SCP (Secure Communication Protocol)

APDU req

APDU resp

• Establish a secure session between a card and an Off-Card Entity
• 2-steps protocol: Key Exchange + Communication
• SCP10 relies on a Public Key Infrastructure:

• Both the card and off-card entity have a key pair
• They use each other public key to encrypt/verify messages

4

SCP (Secure Communication Protocol)

APDU req

APDU resp

APDU req

APDU resp

• Establish a secure session between a card and an Off-Card Entity
• 2-steps protocol: Key Exchange + Communication
• SCP10 relies on a Public Key Infrastructure:

• Both the card and off-card entity have a key pair
• They use each other public key to encrypt/verify messages

4

SCP (Secure Communication Protocol)

SCP

SCP

SCP

SCP

TLS

TLS

Off-Card Entity (OCE)

• Establish a secure session between a card and an Off-Card Entity
• 2-steps protocol: Key Exchange + Communication
• SCP10 relies on a Public Key Infrastructure:

• Both the card and off-card entity have a key pair
• They use each other public key to encrypt/verify messages

4

SCP (Secure Communication Protocol)

SCP

SCP

SCP

SCP

TLS

TLS

Off-Card Entity (OCE)

• Establish a secure session between a card and an Off-Card Entity
• 2-steps protocol: Key Exchange + Communication

• SCP10 relies on a Public Key Infrastructure:
• Both the card and off-card entity have a key pair
• They use each other public key to encrypt/verify messages

4

SCP (Secure Communication Protocol)

SCP

SCP

SCP

SCP

TLS

TLS

Off-Card Entity (OCE)

• Establish a secure session between a card and an Off-Card Entity
• 2-steps protocol: Key Exchange + Communication
• SCP10 relies on a Public Key Infrastructure:

• Both the card and off-card entity have a key pair
• They use each other public key to encrypt/verify messages

4

Key Exchange Modes

CardOCE

Manage Security Environment
Applet Selection

(a) Key Transport mode

(b) Key Agreement mode

5

Key Exchange Modes

CardOCE

Certificate exchange
Manage Security Environment

Applet Selection

(a) Key Transport mode

(b) Key Agreement mode

5

Key Exchange Modes

CardOCE

Perform Security Operation (dec)
Certificate exchange

Manage Security Environment
Applet Selection

(a) Key Transport mode

(b) Key Agreement mode

5

Key Exchange Modes

CardOCE

External authentication
Get challenge

Perform Security Operation (dec)
Certificate exchange

Manage Security Environment
Applet Selection

(a) Key Transport mode

(b) Key Agreement mode

5

Key Exchange Modes

CardOCE

Internal authentication
External authentication

Get challenge
Perform Security Operation (dec)

Certificate exchange
Manage Security Environment

Applet Selection

(a) Key Transport mode

(b) Key Agreement mode

5

Key Exchange Modes

CardOCE

Internal authentication
External authentication

Get challenge
Perform Security Operation (dec)

Certificate exchange
Manage Security Environment

Applet Selection

(a) Key Transport mode

CardOCE

Internal authentication
External authentication

Get challenge
Perform Security Operation (dec)

Certificate exchange
Manage Security Environment

Applet Selection

Key derivationKey derivation

(b) Key Agreement mode

5

Our contributions

Our contributions:

1. Abuse blurs and flaws in the RSA encryption in Key Transport
2. Recovered session keys by two independent means

• In less than a second with the first attack
• In an average of 2h30 for the second

3. Exploit a design flaw to forge a certificate, signed by the card
4. Implement a (semi-)compliant version of SCP10 as an applet
5. Propose a secure implementation, with an estimation of the corresponding

overhead

However, we did not:

× Attack real cards (no implementation in the wild)
× Try to exploit weakness in the symmetric encryption

6

Our contributions

Our contributions:

1. Abuse blurs and flaws in the RSA encryption in Key Transport
2. Recovered session keys by two independent means

• In less than a second with the first attack
• In an average of 2h30 for the second

3. Exploit a design flaw to forge a certificate, signed by the card
4. Implement a (semi-)compliant version of SCP10 as an applet
5. Propose a secure implementation, with an estimation of the corresponding

overhead

However, we did not:

× Attack real cards (no implementation in the wild)
× Try to exploit weakness in the symmetric encryption

6

Our Threat Model

Our attackers can:

X Initiate an SCP10 session with a card
X Intercept, read and modify plaintext message transmitted between a legitimate

Off-Card Entity and the card
X Measure the time needed by the card to respond

They cannot:

× Have physical access to the card
× Break the cryptographic primitives

7

Deterministic RSA Padding

Perform Security Operation

Perform Security Operation APDU:

M: params︸ ︷︷ ︸
3 bytes

|| CRT︸︷︷︸
[22,42] bytes

[|| CRT ...]

CRT: header︸ ︷︷ ︸
[6,8] fixed bytes

|| key︸︷︷︸
[16,24] bytes

[|| 91 08 iv︸︷︷︸
8 bytes

]

EM: 0002 || FF..FF || 00︸ ︷︷ ︸
128−len(M)−3 bytes

|| M

→ Hybrid padding (mixing EME and EMSA)

⇒ Only few unknown bytes (compared to the modulus size)

8

Perform Security Operation

Perform Security Operation APDU:

M: params︸ ︷︷ ︸
3 bytes

|| CRT︸︷︷︸
[22,42] bytes

[|| CRT ...]

CRT: header︸ ︷︷ ︸
[6,8] fixed bytes

|| key︸︷︷︸
[16,24] bytes

[|| 91 08 iv︸︷︷︸
8 bytes

]

EM: 0002 || FF..FF || 00︸ ︷︷ ︸
128−len(M)−3 bytes

|| M

→ Hybrid padding (mixing EME and EMSA)

⇒ Only few unknown bytes (compared to the modulus size)

8

Perform Security Operation

Perform Security Operation APDU:

M: params︸ ︷︷ ︸
3 bytes

|| CRT︸︷︷︸
[22,42] bytes

[|| CRT ...]

CRT: header︸ ︷︷ ︸
[6,8] fixed bytes

|| key︸︷︷︸
[16,24] bytes

[|| 91 08 iv︸︷︷︸
8 bytes

]

EM: 0002 || FF..FF || 00︸ ︷︷ ︸
128−len(M)−3 bytes

|| M

→ Hybrid padding (mixing EME and EMSA)

⇒ Only few unknown bytes (compared to the modulus size)

8

Perform Security Operation

Perform Security Operation APDU:

M: params︸ ︷︷ ︸
3 bytes

|| CRT︸︷︷︸
[22,42] bytes

[|| CRT ...]

CRT: header︸ ︷︷ ︸
[6,8] fixed bytes

|| key︸︷︷︸
[16,24] bytes

[|| 91 08 iv︸︷︷︸
8 bytes

]

EM: 0002 || FF..FF || 00︸ ︷︷ ︸
128−len(M)−3 bytes

|| M

→ Hybrid padding (mixing EME and EMSA)

⇒ Only few unknown bytes (compared to the modulus size)
8

Coppersmith’s Low Exponent Attack

Recover the message if the unknown part is small enough: we need x ≤ n 1
e

Assuming the card is using:

• A 1024 bits modulus
• A small public exponent1(e = 3)

We can recover up to
⌈

log2(n 1
3)

⌉
= 341 bits (≈ 42 bytes)

• An encryption key: 16-24 unknown bytes
• An integrity key (with IV): 26-34 unknown bytes

1

European Payments Council. Guidelines on cryptographic algorithms usage and key management. epc342-08,
2018

9

Coppersmith’s Low Exponent Attack

Recover the message if the unknown part is small enough: we need x ≤ n 1
e

Assuming the card is using:

• A 1024 bits modulus
• A small public exponent1(e = 3)

We can recover up to
⌈

log2(n 1
3)

⌉
= 341 bits (≈ 42 bytes)

• An encryption key: 16-24 unknown bytes
• An integrity key (with IV): 26-34 unknown bytes

1European Payments Council. Guidelines on cryptographic algorithms usage and key management. epc342-08,
2018

9

Coppersmith’s Low Exponent Attack

Recover the message if the unknown part is small enough: we need x ≤ n 1
e

Assuming the card is using:

• A 1024 bits modulus
• A small public exponent1(e = 3)

We can recover up to
⌈

log2(n 1
3)

⌉
= 341 bits (≈ 42 bytes)

• An encryption key: 16-24 unknown bytes
• An integrity key (with IV): 26-34 unknown bytes

1European Payments Council. Guidelines on cryptographic algorithms usage and key management. epc342-08,
2018

9

In practice...

• Recover the message in 0.35s on average for a 128 bits key
⇒ on-the-fly attack possible

• Passive interception only
• Only works for Key Transport

⇒ Need a big enough public exponent, or random padding

B Bigger RSA modulus makes the attack easier

B ”Classic” PKCS#1v1.5 padding may not be a valid solution...

10

In practice...

• Recover the message in 0.35s on average for a 128 bits key
⇒ on-the-fly attack possible

• Passive interception only
• Only works for Key Transport

⇒ Need a big enough public exponent, or random padding

B Bigger RSA modulus makes the attack easier

B ”Classic” PKCS#1v1.5 padding may not be a valid solution...

10

In practice...

• Recover the message in 0.35s on average for a 128 bits key
⇒ on-the-fly attack possible

• Passive interception only
• Only works for Key Transport

⇒ Need a big enough public exponent, or random padding

B Bigger RSA modulus makes the attack easier

B ”Classic” PKCS#1v1.5 padding may not be a valid solution...

10

Padding Oracle

Bleichenbacher’s attack

Abusing Perform Security Operation:

• Anybody can send this APDU (no authentication before)

• 3 steps on card: decryption → verification → TLV parsing
• Unique error code but no mention of constant time
• Constant time verification is hard, even harder with TLV parsing

Authentication via challenge

 Manage session / certificate verification

Key Transport Perform Security Operation

Response

Exploit format
oracle

11

Bleichenbacher’s attack

Abusing Perform Security Operation:

• Anybody can send this APDU (no authentication before)
• 3 steps on card: decryption → verification → TLV parsing

• Unique error code but no mention of constant time
• Constant time verification is hard, even harder with TLV parsing

Authentication via challenge

 Manage session / certificate verification

Key Transport Perform Security Operation

Response

Exploit format
oracle

11

Bleichenbacher’s attack

Abusing Perform Security Operation:

• Anybody can send this APDU (no authentication before)
• 3 steps on card: decryption → verification → TLV parsing
• Unique error code but no mention of constant time

• Constant time verification is hard, even harder with TLV parsing

Authentication via challenge

 Manage session / certificate verification

Key Transport Perform Security Operation

Response

Exploit format
oracle

11

Bleichenbacher’s attack

Abusing Perform Security Operation:

• Anybody can send this APDU (no authentication before)
• 3 steps on card: decryption → verification → TLV parsing
• Unique error code but no mention of constant time
• Constant time verification is hard, even harder with TLV parsing

Authentication via challenge

 Manage session / certificate verification

Key Transport Perform Security Operation

Response

Exploit format
oracle

11

In practice...

• Attack possible with some additional analysis

• Large number of query needed
• Average: 28000 queries ≈ 2h30
• Can be reduced by increasing brute force

• No on-the-fly attack: message collection for future decryption

⇒ Need robust RSA padding (OAEP would solve both problems)

12

In practice...

• Attack possible with some additional analysis

• Large number of query needed
• Average: 28000 queries ≈ 2h30
• Can be reduced by increasing brute force

• No on-the-fly attack: message collection for future decryption

⇒ Need robust RSA padding (OAEP would solve both problems) 12

Key Reuse

RSA Key Reuse

Design flaw:

• Same RSA key for Key Transport and Key Agreement
• Same RSA key for confidentiality and authentication

⇒ Less storage, processing and complexity but no key isolation

Consequences:

• Valid signature forgery using Bleichenbacher’s attack
• On average 74838 queries ≈ 7h

• Certificate forgery, signed by the card ⇒ card impersonation in all future sessions
• In case of shared CA, a single forgery may allow impersonating on a large scale

⇒ Need key isolation

13

RSA Key Reuse

Design flaw:

• Same RSA key for Key Transport and Key Agreement
• Same RSA key for confidentiality and authentication

⇒ Less storage, processing and complexity but no key isolation

Consequences:

• Valid signature forgery using Bleichenbacher’s attack
• On average 74838 queries ≈ 7h

• Certificate forgery, signed by the card ⇒ card impersonation in all future sessions
• In case of shared CA, a single forgery may allow impersonating on a large scale

⇒ Need key isolation

13

RSA Key Reuse

Design flaw:

• Same RSA key for Key Transport and Key Agreement
• Same RSA key for confidentiality and authentication

⇒ Less storage, processing and complexity but no key isolation

Consequences:

• Valid signature forgery using Bleichenbacher’s attack
• On average 74838 queries ≈ 7h

• Certificate forgery, signed by the card ⇒ card impersonation in all future sessions
• In case of shared CA, a single forgery may allow impersonating on a large scale

⇒ Need key isolation

13

Secure Implementation

Major countermeasures

• Key isolation
• Significant overhead during certificate verification
• No need to repeat it at each session

• RSA-OAEP
• Negligible overhead (≈ 0.01s)

• Enforce public exponent e = 65537
• Negligible overhead
• Not mandatory when using OAEP

14

Conclusion

Sum-up

• We tried to apply well known attack to the smart cards world
• Successfully performed two attacks speculating on the implementation

• We believe our assumption to be reasonable giving past attacks
• Key isolation is not implementation dependent

• Suggest mitigations:
• Easy to add in the specification
• Reasonable overhead

• GlobalPlatform released a new standard version based on our recommendations

15

Thank you for your attention !

16

	Context
	Deterministic RSA Padding
	Padding Oracle
	Key Reuse
	Secure Implementation
	Conclusion

