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Abstract—It is universally acknowledged that Wi-Fi commu-
nications are important to secure. Thus, the Wi-Fi Alliance
published WPA3 in 2018 with a distinctive security feature: it
leverages a Password-Authenticated Key Exchange (PAKE)
protocol to protect users’ passwords from offline dictionary
attacks. Unfortunately, soon after its release, several attacks
were reported against its implementations, in response to
which the protocol was updated in a best-effort manner.

In this paper, we show that the proposed mitigations are
not enough, especially for a complex protocol to implement
even for savvy developers. Indeed, we present Dragondoom, a
collection of side-channel vulnerabilities of varying strength
allowing attackers to recover users’ passwords in widely
deployed Wi-Fi daemons, such as hostap in its default
settings. Our findings target both password conversion meth-
ods, namely the default probabilistic hunting-and-pecking
and its newly standardized deterministic alternative based
on SSWU. We successfully exploit our leakage in practice
through microarchitectural mechanisms, and overcome the
limited spatial resolution of Flush+Reload. Our attacks out-
perform previous works in terms of required measurements.

Then, driven by the need to end the spiral of patch-and-
hack in Dragonfly implementations, we propose Dragonstar,
an implementation of Dragonfly leveraging a formally veri-
fied implementation of the underlying mathematical opera-
tions, thereby removing all the related leakage vector. Our
implementation relies on HACL*, a formally verified crypto
library guaranteeing secret-independence. We design Drag-
onstar, so that its integration within hostap requires minimal
modifications to the existing project. Our experiments show
that the performance of HACL*-based hostap is comparable
to OpenSSL-based, implying that Dragonstar is both efficient
and proved to be leakage-free.

1. Introduction

1.1. Context and Motivations

Nowadays, there are more active Wi-Fi devices around
the world than there are human beings. The Wi-Fi Alliance
estimated the Wi-Fi global economy value to be $3.3
trillion in 2021, and forecast its growth to $4.9 trillion
by 2025 [8]. Such ubiquity and economic worth make
protecting Wi-Fi vital. Since 2003, the Wi-Fi Alliance has
introduced three major versions of its security protocol,

namely the Wi-Fi Protected Access (WPA). The most re-
cent one dates back to 2018, when WPA3 was announced
in response to several serious weaknesses being identi-
fied in WPA2 [63]–[65]. A distinctive security feature
of WPA3 is to leverage a Password Authenticated Key
Exchange (PAKE) protocol, called Dragonfly, to protect
users’ passwords from the offline dictionary attacks that
haunted the WPA2 handshake authentication. Despite its
recent release, WPA3 has already been largely adopted
by major Wi-Fi providers and software; in particular,
it has become mandatory for Wi-Fi certification since
July 2020 [7].

The rising popularity of Dragonfly, or its WPA3
variant called Simultaneous Authentication of Equals
(SAE), and the controversy raised by several CFRG mem-
bers [25], [47], motivated research works to assess the
security of its deployed implementations. Notably, Van-
hoef and Ronen [66] successfully found and exploited
a microarchitectural side-channel in multiple WPA3 im-
plementations to recover users’ passwords. This attack
was improved and extended to more implementations by
De Almeida Braga et al. [21]. Both works target some
secret-dependent execution within the controversial pass-
word derivation function of Dragonfly called hunting-and-
pecking [34]. Given their significance, multiple actions
were taken following the disclosure of these attacks. Sev-
eral countermeasures were applied to patch the vulnera-
ble WPA3 implementations. In addition, the WPA3 stan-
dard has evolved to propose SSWU (Simplified Shallue-
Woestijne-Ulas) [17], [24]; an alternative password deriva-
tion function that is easier to securely implement.

After much effort, one might reasonably presume
that the attack vectors as presented in [21], [66] be no
longer relevant. Namely, eminent open-source WPA3 im-
plementations (e.g., hostap) are expected to be exempt
from microarchitectural side-channel attacks, especially
that they were analyzed both manually and by leveraging
automatic tools to detect microarchitectural leaks, such as
MicroWalk [68]. In this paper, we challenge this belief and
raise the question again of whether Dragonfly is secure in
practice. Our approach consists of analyzing and tracking
password-tainted values within the password conversion
operation of Dragonfly, especially inside calls to external
functions. Indeed, Dragonfly implementations rely mostly
on third-party libraries to perform their required crypto-
graphic operations. These libraries do not always provide



“constant-time” (secret-independent) implementations for
their functions. Unfortunately, the security impacts of
calling an external leaky function within Dragonfly was
left unstudied. Our work brings to light this untapped
source of leakage that can be successfully exploited to
recover users’ passwords even when SSWU is used.

1.2. Our Contributions

In this paper, we introduce Dragondoom: a collection
of side-channel vulnerabilities caused by the supported
cryptographic libraries in widely deployed WPA3 imple-
mentations. Indeed, we found that most libraries we as-
sessed do not execute Dragonfly operations independently
from password-related values. For instance, the execution
flow of the elliptic curve point decompression algorithm
depends on the compression format, which is linked to the
password, resulting in a side-channel leak. Unlike previous
works, we show that the identified vulnerabilities do not
only concern “hunting-and-pecking”, but also the recently
implemented SSWU that is secret-independent by design.

We demonstrate our vulnerabilities in multiple cryp-
tographic libraries used by widespread SAE implemen-
tations: hostap, iwd and FreeRadius. We describe how
the leakage can lead to an offline dictionary attack,
which defeats the purpose of leveraging a PAKE protocol
in WPA3. To this end, we make use of well-known
microarchitectural techniques, namely Flush+Reload and
Performance Degradation Attack (PDA), to monitor some
targeted instructions. We show the effectiveness of our
attack by successfully recovering users’ passwords in the
most recent version of hostap using OpenSSL, which is
the default setting for the Wi-Fi daemon on most Linux-
based systems. We also demonstrate that other rising
implementations, such as iwd/ell, are also affected by this
vulnerability, to a greater degree.

Dragondoom highlights an interesting fact: implemen-
tation security in a well-established standard still does
not withstand a simple side-channel analysis despite their
prevalence. Therefore, rather than finding and fixing bugs
in an ad-hoc manner, we propose Dragonstar as a long-
term mitigation to prove the absence of large classes of
vulnerabilities by design. Simply put, we consider hostap
(one of the most deployed Wi-Fi daemons), and study
its common cryptographic API that is used to process all
the required low-level cryptographic operations. Then, we
implement this API by leveraging the formally verified
HACL* cryptographic library. Our design presents two
main advantages. First, Dragonstar is easily deployable in
practice since it relies on the flexible design of hostap.
Second, it provides decent performance when compared
to hostap calling legacy libraries, such as OpenSSL.

Due to the popularity of the targeted projects, we ex-
pect both Dragondoom and Dragonstar to impact millions,
if not billions, of devices. We have not only communi-
cated our findings to the maintainers of these open-source
projects, but also reviewed their short-term patches. Note
that the technical details of our work are the same in
both WPA3 and EAP-pwd, since SAE is part of both
protocols with only minor differences. For the sake of
clarity, the core of the paper focuses on Wi-Fi daemons
(i.e., SAE), since they are more prevalent. To summarize,
our contributions are the following:

1) We introduce Dragondoom; a wide leakage vector
caused by the supported cryptographic libraries.

2) We examine the impact of Dragondoom in multiple
projects, and show how it can result in passwords
recovery. Here, we do not only target the legacy mode
“hunting-and-pecking” like the previous work, but
we also introduce the first side-channel vulnerability
impacting the new SAE-PT mode.

3) We provide a full Proof of Concept of our attack1 on
the default Wi-Fi setting of most Linux systems (i.e.,
hostap with OpenSSL).

4) We present Dragonstar, an implementation of Drag-
onfly that uses formally verified code for all crypto-
graphic operations, and we demonstrate how it can be
used as drop-in replacement of OpenSSL in hostap
without impacting performance2.

In this paper, we show, once again, that implement-
ing cryptographic protocols for real-world applications
is error-prone, and can have both obvious and subtle
vulnerabilities that are hard to detect. In particular, quite
often, they rely on some third-party libraries to imple-
ment low-level cryptographic operations. The execution
flow of these operations is not always independent of
their arguments. Thus, a leakage occurs whenever a call
with secret-dependent values is made. The diversity of
protocols makes it unreasonable to strictly implement all
these operations in constant time.

1.3. Attack Scenario

To illustrate the practical aspect of Dragondoom, we
define the following potential attack scenario. We empha-
size that we only describe a broad outline of one potential
scenario, and do not aim at giving all relevant details. Our
focus is to prove that WPA3 is still vulnerable to side-
channel attacks.

We assume Dragonfly is being used in WPA3, with
a client (the victim) connecting to an Access Point (AP).
The client would then use the Wi-Fi password to con-
nect, whether for the first time (manually entering it), or
automatically connecting to a known network. The goal
of attackers is to recover the secret password. Similar
to previous work, we suppose attackers controlling an
unprivileged spyware running on the victim’s device. The
attack performs better if the victim is tricked to execute the
WPA3 handshake with a fake AP controlled by attackers,
so that more data can be collected on the same password.
When enough data is leaked, attackers finally go offline to
perform some dictionary partitioning attack. The adopted
strategy is out of scope of our work.

Disclosure

We disclosed our findings to the hostap security team
in December 2021. We contacted other affected projects
(iwd/ell from Intel and FreeRadius) in January 2022.
hostap promptly reacted, asking us to review a patch,
which later was committed3, and a security advisory has
been published. Intel decided to fix their cryptographic

1. https://gitlab.inria.fr/ddealmei/artifact dragondoom
2. https://github.com/ddealmei/dragonstar
3. Patch hostap [1] [2]
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library, ell, and also asked us to review their patch4. Both
iwd and hostap released a new stable version patching
the vulnerability soon after our disclosure. FreeRadius
has committed our patch to their project. We contacted
OpenSSL and WolfSSL in May 2022 to disclose our
second vulnerability. Both acknowledged our analysis, but
argued that it is upon developers’ responsibility to avoid
calling their leaky functions with secret-dependent values.

2. Background

This section first gives an overview of the Dragon-
fly protocol and its variant Simultaneous Authentication
of Equals (SAE) that is used in WPA3 and EAP-pwd.
Then, we describe the side-channel techniques we lever-
age. Finally, we introduce the relevant notions of formal
verification of secret independence regarding our work.

2.1. The Dragonfly Key Exchange

Dragonfly is a Password Authenticated Key Exchange
(PAKE) protocol, designed by Dan Harkins in 2008 [33].
It is an interactive protocol enabling two parties to es-
tablish an authenticated channel based on a supposedly
low entropy secret. In particular, as a PAKE, it is re-
quired to resist (offline) dictionary attacks: the validity
of a password can be guessed only by running a session
and observing the outcome. Each part knows the shared
secret before initiating the protocol, making Dragonfly a
symmetric PAKE. In particular, the protocol follows the
same workflow for both sides.

After stirring some controversy during the CFRG re-
view process [25], [47], Dragonfly was properly described
as RFC 7664 [34] in 2015. Since then, Dragonfly and its
variant, SAE, have been officially endorsed and widely
deployed as key features by IEEE 802.11 and WPA3 [3],
and used for EAP-pwd [73] and TLS-pwd [36].

The handshake security relies on the discrete logarithm
problem. Support for both multiplicative groups modulo
a prime (MODP) and Elliptic Curve Cryptography over
a prime field (ECP) is described in the references [3],
[34]. The exact operations of the handshake vary slightly
depending on the underlying group. For the sake of
brevity, we only consider ECP group. As required by the
specifications (section 12.4.4.1 of [3]), we assume group
19 (corresponding to P256) as the default supported curve
unless stated otherwise.

Thereafter, we adopt a classic elliptic curve notation:
G is the generator of a group, with order q. Lowercase
denotes scalars and uppercase denotes group elements. For
elliptic curve, we assume the equation to be in the short
Weierstrass form y2 = x3+ax+b mod p, where a, b and
p are curve-dependent and p is prime.

Dragonfly is broken into three parts: (i) password
derivation; (ii) commitment; and (iii) confirmation.

As the core of our contributions focuses on the pass-
word derivation, we only detail this step of the protocol.
The goal is, for both the sender and the receiver, to convert
the shared password into a group element. Since IEEE
802.11-2020 [3], two methods are part of the standard.

4. Patch ell [1] [2]

1 def hunting and pecking(pwd, macA, macB, ec):
2 found, counter = False , 0
3 A, B = max(macA, macB), min(macA, macB)
4 while counter < k or not found:
5 counter += 1
6 seed = Hash(A || B || pwd || counter )
7 x cand = KDF(seed, label 1, ec.p)
8 if is x coordinate (x cand, ec) and not found:
9 x, pointType , found = x cand, seed , True

10 # Not described in the RFC, but implemented in SAE
11 pwd = get random(32)
12
13 P = set compressed coordinate (x, 2 + (pointType & 1), ec)
14
15 return P

Listing 1: Hunting-and-pecking on ECP group as used in
WPA3. The value of label_1 and k may vary along with
the implementation, with a recommended value of k≥ 40.

1 def hash2element(pwd, ssid , identifier , ec) :
2 len = olen(ec .p) + ⌊ olen(ec .p)/2 ⌋
3 # extract seed material to get multiple random values
4 seed = hkdf extract ( ssid , pwd || identifier )
5 # expand the seed into a first random value
6 pwd value = hkdf expand(seed, label u1 P1, len )
7 u1 = pwd value mod ec.p
8 P1 = SSWU(ec, u1)
9 # expand the seed into a second random value

10 pwd value = hkdf expand(seed, label u2 P2, len )
11 u2 = pwd value mod ec.p
12 P2 = SSWU(ec, u2)
13 PT = P1 + P2
14 # PT is stored and used to generate a session specific P
15 return PT
16
17 def get password element(PT, macA, macB, ec):
18 k = hkdf extract (0, macA || macB)
19 k = (k mod (ec .q − 1)) + 1
20 return k × PT

Listing 2: Hash-to-element on ECP group as used in
WPA3. Capitalized variables denote points on the curve.
The HKDF is based on the extract-then-expand paradigm.
The first stage takes the input keying material and
”extracts” a fixed-length seed. The second stage ”expands”
the seed into several pseudorandom values of chosen
length. Note that PT is computed once, and then reused
at session establishment to compute P.

Hunting-and-pecking. The default method, presented
as the only available option in previous versions of the
standard [1], [2], is based on a probabilistic try-and-
increment method called hunting-and-pecking. This ap-
proach consists in hashing the password along with the
identity of both parties and a counter until the computed
value corresponds to a group element. For ECP groups,
this involves two steps. It first converts the password into
the x-coordinate of a point. Then, since two y-coordinates
may be valid, only one is chosen based on the parity of
some values. The pseudocode describing this process on
ECP groups is summed-up in Listing 1.

Hash-to-element. Following the disclosure of Drag-
onblood [66] in 2019, both the Wi-Fi Alliance and EAP-
pwd updated their standard to describe a password conver-
sion method based on SSWU [3], [35]. This method is a
deterministic, efficient and easy-to-implement alternative
to hunting-and-pecking. Readers can refer the pseudocode
in Listing 2 and to the specification for more details.

We stress that this second method is not backward-
compatible. Therefore, both peers need to agree on the
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password derivation method to be used. The standard
states that implementation should default to the original
method, namely hunting-and-pecking, ”If the AP does
not indicate support for the SAE hash-to-element in its
Extended RSN Capabilities field or the SAE initiator does
not set the status code to SAE HASH TO ELEMENT
in its SAE Commit message”. Until recently, widespread
implementations (such as hostap) did not implement it in
their stable release. Upon disclosure of our vulnerability,
hostap released a new version (v2.10), deploying a patch
and support for SSWU-based hash-to-element.

2.2. Simultaneous Authentication of Equals

WPA3 includes a slight variant of Dragonfly, called
SAE [3]. In this variant, the label values are fixed and
each party is identified by its MAC address. Both peers are
referred to as stations, or STAs. The protocol is referred
as SAE or SAE-PT depending on the used password
conversion method (for hunting-and-pecking method and
hash-to-element respectively).

The SAE handshake is executed between the client
and the Access Point (AP) to compute the Pairwise Master
Key (PMK). Afterward, a classic WPA2 4-way handshake
is performed with this PMK to derive fresh cryptographic
materials. Since the entropy of this key is higher than in
WPA2, the dictionary attack on the 4-way handshake is
no longer relevant.

2.3. Microarchitectural Preliminaries

Cache Architecture. Caches are a special hardware
feature found on modern CPUs to offset the discrepancy
between fast processing and slow memory access. They
act as small, but fast access buffers located directly on the
CPU. On modern hardware, caches are broken down into
multiple levels, built with an access hierarchy, going from
the lower L1 cache to the Last Level Cache (LLC), often
shared across all cores. On personal computers, the LLC
is usually L3. We note that L1 is the only cache where
data and instructions are separated.

Each cache is divided into multiple sets, each of which
contains multiple cache lines of fixed size (standard size
is 64 bytes). When executing a program, CPU cores will
look into its lower cache for instructions and data. If the
cache line is not available (cache miss), it will be fetched
from higher memory levels (L2, LLC, RAM). For later
access, the CPU should find it in the cache (cache hit),
avoiding the overhead of accessing higher memory levels.

Flush+Reload Attack. As CPU caches are shared
among processes, attackers may leverage the time gap
between a cache hit and a miss to get information on the
cache state and infer a particular process access pattern.
These attacks, referred as access-driven, are particularly
handy to guess the program execution flow. Flush+Reload
has proven to be very accurate and efficient to monitor
cache access using the state of the inclusive LLC (inclu-
sive caches are commonly found on Intel processors).

The idea is to exploit memory sharing between two
processes - a victim V and a spyware S. The goal of S is
to probe a specific memory line from this shared memory.
The attack is carried out in three steps. First, S flushes

the probe out of the LLC with the appropriate instruction
(clflush or clflush_opt). Since the LLC is inclusive,
this operation ensures that the probe is no longer in any
cache. S then idles for a period of time, during which
it waits for V to execute - or not - the probe. Finally,
S reloads the probe and measures the reload time. If V
has executed the probe during the idle period, the reload
results in a hit, hence a short reload time. Otherwise, the
access will be significantly longer. Repeating these steps
allows the attacker to identify when the probe has been
used by the victim process.

Performance Degradation Attack (PDA). The mere
idea behind Flush+Reload is to perform a few assem-
bly instructions to flush, reload and time the operations.
Naively looping over these operations would introduce
blind spots on concurrent reload, where attackers would
miss many events. To prevent this, measurements are
usually performed periodically, by defining an appropriate
idle period between flushing and reloading. Doing so,
on one hand, we increase the temporal resolution by the
additional idle. On the other hand, attackers would not
distinguish multiple accesses to the probe if they occur
within the same time slot. The PDA is a technique in
which a well-chosen memory line is constantly flushed
out. This allows attackers to benefit from the longer
idle without missing valuable information [6]. Combin-
ing Flush+Reload with PDA is common, and has been
leveraged numerous times [5], [6], [11], [16], [20]–[22],
[28]–[30], [48].

2.4. Formally Enforcing Secret Independence

Secret Independence. One of the most common sources
of side-channel leaks in cryptographic code is secret-
dependent control flow, e.g., when an implementation
branches on a value derived from a secret, or performs
secret-dependent memory access, e.g., when an array is
indexed with a secret value. Such leaks have been suc-
cessfully exploited to mount remote timing attacks on im-
plementations of a variety of cryptographic constructions.

To prevent such attacks, cryptographic experts recom-
mend a coding discipline that is sometimes (somewhat
misleadingly) termed “constant-time”, and is more accu-
rately called secret independence: all branches and mem-
ory accesses should only be dependent on public values.
This discipline is rigorously implemented in mainstream
cryptographic libraries, but is hard to get right, as the
attacks in this paper demonstrate.

Formal Verification of Secret Independence. Several
works have proposed semi-automated methods for for-
mally verifying that cryptographic code is secret indepen-
dent. See [12] (Section IV) for a recent survey; in particu-
lar, tools like Vale [26] and Jasmin [9] can analyze secret
independence for assembly code, while HACL* [72] en-
forces secret independence on cryptographic implemen-
tations in C. Each method relies on a formal leakage
model, where attackers are typically allowed to observe
all branch results and the sequence of all memory ad-
dresses accessed by the program. A verification tool then
implements a sound and conservative analysis, so that if
it says a program is secret independent, then attackers
cannot distinguish a secret from a fresh random value.
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HACL*: A Verified Cryptographic Library. HACL*
is a cryptographic library [49], [50], [72] that includes
formally verified C implementations for a full suite of
modern cryptographic algorithms, including hash func-
tions, encryption algorithms, elliptic curves, and signature
schemes, all of which are verified for functional cor-
rectness, memory safety, and secret independence. Each
cryptographic implementation is written in the F* pro-
gramming language [57], verified using the dependent
type system of F*, and then compiled to C via a tool
called KreMLin [51]. A compilation theorem guarantees
that all verified guarantees, including secret independence,
hold in the generated C code [51].

When implementing a cryptographic algorithm in
HACL*, the programmer annotates each bytestring and
integer in the program as secret or public. This F* type
system tracks all secret and public bytes and integers to
enforce a secret-independent discipline. For example, each
encryption key is treated as an array of secret (opaque)
bytes. The programmer may convert these bytes into
secret integers, perform secret-independent operations like
additions and multiplications, and then convert them back
to bytes. However, the programmer cannot compare secret
bytes (or integers) and cannot use secret integers as array
indexes. A security theorem then states that this type-
based discipline enforces secret independence [51].

3. Leakage Exploitation

3.1. Previous Attacks

Side-channel attacks against WPA3 can be divided
into four steps: (1) finding some password-dependent ex-
ecution, (2) identifying the leakage source of password-
related data, (3) collecting data through side-channels,
and (4) performing an offline dictionary partitioning at-
tack. Related attacks mostly share step 4, and differ in
other steps. The strategy of recovering passwords, namely
dictionary partitioning, is often considered as a possible
implication of the identified leakage, and not a purpose
in its own. Indeed, step 4 aims at providing a common
benchmark about the efficiency of the identified leakage.
We do not claim that this approach is the best way to
recover passwords. Indeed, dictionary attacks do not nec-
essarily lead to password recovery, especially for strong
passwords. However, we still follow this approach to build
a common benchmark with previous attacks. As for step 3,
it depends on the leveraged microarchitectural techniques,
while step 2 defines the number of bits related to the secret
per execution trace. Previous attacks [21], [66] share steps
1 and 4, but differ in steps 2 and 3. Indeed, both exploits
the password-conversion loop (lines 4 to 11 of Listing 1).
Below, we describe their differences.

The Dragonblood attacks [66] presented a side-
channel on the password conversion. In steps 2 and 3,
they recover information on the password by observing the
duration of the first iteration of the password conversion;
a successful conversion would need more time to process
the additional instructions. A successful conversion occurs
with a probability of 0.5. Hence, this attack provides a
fixed amount of leakage on the used password.

In [21], authors perform a similar attack on implemen-
tations that did not properly mitigate Dragonblood. They

improved the original attack in step 2 by targeting more
specific instructions to extract more information from each
observation. Namely, instead of only learning whether
the successful conversion occurs during the first iteration,
they get the exact corresponding iteration. Considering the
conversion probability at each iteration, this doubles the
amount of obtained leakage.

Our attack differs from these works in multiple as-
pects. First, in step 1, we identify a new leakage source.
Previous attacks leak information about the conversion
iteration, and they were patched by making the work-
flow of each iteration of the loop secret-independent. Our
attack instead targets generic functions from the called
cryptographic library (line 13 of Listing 1). To the best
of our knowledge, this leakage vector has not been iden-
tified before. Second, experimentally, our attack in step 3
requires fewer side-channel measurements than previous
works to recover a password for the same threat model.
Being implementation-dependent, we will provide more
details about the attack practical efficiency in subsec-
tion 5.3. We achieve this performance by introducing a
different Flush+Reload-gadget (see subsubsection 5.2.2),
leveraging instruction prefetching to overcome the spatial
limitation of classical attacks. More importantly, unlike
previous works, Dragondoom provides a wider scope for
attackers, impacting not only all previously patched imple-
mentations, but also the recently supported SAE-PT. We
show that despite its constant-time design, it still suffers
from implementation pitfalls. In follows, we present steps
3 and 4 in a generic way, as well as the threat model.

3.2. Threat Model

As is often the case when targeting Wi-Fi daemons,
we consider attackers with some physical proximity (i.e.,
within network range). We also assume that they can
monitor multiple handshakes using the same password
while varying at least one MAC address. This can be
achieved differently depending on the target. First, sup-
pose the target be an AP. In that case, attackers can try
to connect, triggering an (invalid) handshake (the relevant
part of the handshake will execute even if the password
is invalid). Second, if the target is a client, attackers can
set up a fake AP to impersonate a valid one (known to
the user) by spoofing the original AP and advertising
the same SSID with stronger signal strength (making
it the default choice for the client Wi-Fi daemon). In
both cases, attackers can easily control the MAC address
used by the targeted device in order to leak enough data
to recover the password. Setting a fake AP comes with
other benefits. Indeed, they can force authentication using
SAE, with the default password derivation, by simply
omitting the corresponding Extended RSN Capabilities
field. Moreover, we also assume that attackers control an
unprivileged process running on the victim’s device. We
do not consider an attacker having access to the victim’s
Wi-Fi. Therefore, our model applies even when the spy
process is sandboxed, or access to the network manager
(e.g., nmcli on Linux and netsh on Windows) has been
restricted by some access control rules. For instance, by
default on some operating systems, processes running on
behalf of an unprivileged user cannot read the Wi-Fi
passwords entered by another user. Our attack still works
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in these restricted cases because the only requirement is to
be able to execute some unprivileged instructions. Finally,
we stress that our threat model is common to previous
cache-based attacks [21], [66].

3.3. Step 3: Collecting Data and Leakage Aggre-
gation

Side-channel leakage samples are obtained through
observing some execution. We recall that the two stan-
dardized password conversion methods are deterministic
with respect to the password and the sender’s/receiver’s
identities. This means that, except for masked computa-
tions, we can observe the same values for the same run.
This is fortunate for the attackers, since microarchitectural
techniques are noisy, thereby requiring several observa-
tions to obtain reliable leakage.

Once the leakage is acquired, attackers might need
more data than one run can reveal to succeed in practice.
Therefore, they may trigger new leakage on the same
secret value. This is possible only when the leaked secret-
related value involves public parameters that can be ma-
liciously modified.

Thus, given a spying process leaking ℓ bits of a
secret value, we denote ℓi as the leakage related to a
given execution, namely a fixed set of public parameters.
Consequently, the overall leakage obtained by attackers
can be represented as follows: Cn = {ℓi, i = 1...n}. We
say that Cn contains n traces. Ultimately, Cn may be used
as a fingerprint of the password to perform a dictionary
partitioning attack.

3.4. Step 4: Dictionary Partitioning Attack

Once the fingerprint of the targeted password is leaked,
attackers can switch into an offline mode. Indeed, they
apply the password conversion function to a dictionary of
password candidates. Then, they discard each candidate
whenever the leaked bits do not match the computed
values. In the case of hunting-and-pecking, they can drop
all dummy computations once the password is converted.

An interesting question is how large the fingerprint
should be to uniquely find the correct password. In other
words, supposing a dictionary with d passwords, what is
the smallest number of traces that eliminates all wrong
candidates with high probability? Intuitively, given a fin-
gerprint Cn, the probability that a password candidate does
not match k leakages follows a binomial distribution, with
p being the probability corresponding to the leakage. Thus,
we can infer the probability that d candidates are pruned
given n traces. The smaller n, the more efficient the attack
is. For a complete description, we defer the reader to [66]
(Section 7.2) and [21] (Section 3.5).

Simply put, the fingerprint Cn allows attackers to
perform an offline dictionary attacks, as demonstrated in
previous attacks against WPA3 [21], [66]. In our paper,
we propose to extend this benchmark measuring the ef-
ficiency of the resulted offline dictionary attack, while
not involving the dictionary size. Thus, we introduce D
as the ratio between the leakage for a fixed set of pa-
rameters (ℓ), and the number of measurements necessary
for a reliable leakage (R). This is directly related to

the number of required microarchitectural measurements
to prune a given dictionary. A perfect dictionary attack
would allow attackers to prune all invalid candidates by
observing one single online authentication session. This
would translate to R = 1 and ℓ = log2(#dictionary),
hence D = log2(#dictionary). Generally speaking, the
bigger D is, the better the attack is. Our experimental
results, detailed in section 5, show that our identified
vulnerabilities against hunting-and-pecking outperforms
previous attacks defined in [66] and [21].

4. Dragondoom: Side-channels in the crypto-
graphic libraries

In this section, we show how Dragonfly implemen-
tations can still leak during the password conversion
method. In particular, we investigate calls to external
cryptographic libraries with password-related values. We
highlight two sources of leakage, which we call Dragon-
doom, affecting both the default hunting-and-pecking and
the recently standardized SSWU-based hash-to-element.
The identified leakages are related to passwords, so they
can directly result in dictionary attacks as discussed in
section 3. This section describes the theoretical study of
these interactions (steps 1 and 2 of the attack), while
practical aspects are discussed in section 5.

4.1. Motivation

Along the standardization process, several design flaws
have been identified against widely deployed WPA3 im-
plementations because of hunting-and-pecking [21], [47],
[66]. Consequently, various mitigations have been imple-
mented to avoid password-dependent time variation in
the execution of this password conversion method. The
mitigations include: (1) fixing the number of iterations to
40, (2) performing any additional operation on a dummy
random string instead of the password, (3) implementing
the loop in constant time, and (4) masking the Legendre
symbol computation. All these modifications show that it
is hard to provide secure implementations of hunting-and-
pecking, even for savvy developers.

Despite much effort, we suspect that WPA3 implemen-
tations still leak passwords. Our intuition comes from the
fact that previous works only discovered leakages caused
by the WPA3 code itself; in particular the password-
conversion loop (lines 4 to 11 of Listing 1). However,
most WPA3 implementations rely on external libraries to
perform some mathematical operations on big numbers
or elliptic curves. Some of the called functions are not
secret-independent, because they mostly deal with public
values. Nevertheless, they do involve password-dependent
values in Dragonfly.

In this paper, we look carefully into the part of the
code making external calls with secret-related values.
Here, we perform a tainted analysis of the password con-
version function using timecop5, combined with manual
analysis. We highlight two main leakages. First, the point
decompression, called when the hunting-and-pecking is
successful, leaks a relation between a point coordinate

5. https://post-apocalyptic-crypto.org/timecop/
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1 def set compressed point coordinate (x, pointType , ec) :
2 y sqr = x3 + ec.a×x + ec.b mod ec .p
3 y = sqrt mod(y sqr, ec .p)
4 if ( y mod2 ̸≡ pointType mod2 )
5 y = ec.p − y
6 P = (x, y)
7
8 return P

Listing 3: Point Decompression Algorithm

and a password-related value. Second, the binary-to-big-
number routine, called on various values including secrets,
leaks the number of MSB of the input being zeros. Despite
the previous extensive and systematic study of the big
number operations [67], these functions were not exploited
before.

Of particular interest, we study widely used libraries,
namely OpenSSL, WolfSSL and ell, supported by popular
SAE (and EAP-pwd) implementations: hostap, FreeRadius
and iwd. Our findings reveal that all of these libraries
are affected by at least one vulnerability. Consequently,
projects relying on the generic point decompression func-
tion exposed by these cryptographic libraries leak secret
information. One peculiar example is Apple CoreCrypto
which provides its own SAE implementation, where it re-
implements routines to be secret-independent. A deeper
analysis of all these implementations and their differences
is given in section 5. Note that our work might be of inter-
est for any protocol calling the analyzed leaky functions
with secret-dependent arguments. In this paper, we focus
solely on the resulting vulnerabilities in WPA3.

4.2. Point Decompression

This vulnerability only affects hunting-and-pecking
(SAE), as the routine is not used in SSWU (SAE-PT).

Leakage Data: Seed Parity. We recall that, after the
conversion loop, we expect to have found the x-coordinate
of the resulting point with overwhelming probability.
Since a single x-coordinate can describe two points ((x, y)
and (x, p − y)), the algorithm requires a deterministic
way to choose the output. Here, Dragonfly relies on the
LSB of the seed value (i.e., its parity) that generated
the x-coordinate, to determine the compression format of
set_compressed_point_coordinate (Listing 1, line 13).

Note that the seed is computed from one secret value
and two public ones: the password and MAC addresses of
each end. As a result, any bit of information leaked from
the seed can be related to the password, thereby causing
a dictionary partitioning attack (cf. subsection 3.4). Thus,
the security of WPA3 also relies on whether the point
decompression algorithm is secret-independent regarding
the seed parity. Next, we describe the internals of this
algorithm as applied for elliptic curves supported by SAE.

Leakage Origin: Compression Format. As described in
Listing 3, the generic decompression algorithm takes three
parameters: the x-coordinate of a point, pointType as the
compression format, and ec that stores the curve param-
eters. The algorithm computes one of the two candidates
for y-coordinate, using Tonelli-Shanks. Then, it selects the
y-coordinate to return based on the value of pointType

and the parity of y. We note that because p is an odd
prime number, only one y candidate can be even. On a

naive implementation, it is easy to notice that the branch
line 4 would leak whether the parity of y matches the
parity of the compression format. Interestingly, while this
line expresses a single condition, it may be broken down
into multiple branches. For instance, one can implement
it by looking first at the compression format, and then
processing it differently depending on the parity of y.

Leakage Impact. The point decompression method is
called with two password-tainted values: the x-coordinate
and the compression format. Obviously, we suppose that
attackers do not know either value and cannot make
a knowledgeable guess about their parity. However, we
suppose that attackers be able to guess whether con-
ditional subtraction in line 5 of Listing 3 is executed,
which implies that they would recover some information
about the parity of secret values. The x-coordinate being
uniformly distributed on the curve, the parity of y also is.
Moreover, since the seed is the output of a cryptographic
key-derivation function, it can be seen as the output of a
random oracle. Hence, it is plausible to consider that their
parity is equal with probability pr = 0.5.

This means that attackers can recover one bit of in-
formation if any leakage in line 5 occurs. A second bit
of information is recovered if the condition in line 4 is
broken into multiple steps: the parity of y or the seed,
with the parity equality of both values.

4.3. Binary to Big Number Conversion

This vulnerability affects both hunting-and-pecking
(SAE) and SSWU-based hash-to-element (SAE-PT).

Leakage Data: Secrets MSB. In cryptography, it is quite
common to perform computations on integers not fitting
in native types (usually limited to 64 bits on modern
architectures). Thus, libraries define a special structure,
called ”big numbers” (abbreviated BN from now), that
often boils down to a set of buffers representing the actual
value, alongside flags and indexes. However, the manipu-
lated values do not always present as BN; they can come
in other formats. Thus, they require to be parsed before
any computation. Of particular interest, coordinates of
the secret point and secret-dependent values shall also be
appropriately parsed, or converted, into the BN structure.
Below, we note that the secret values can be leaked if the
conversion routine is not secret-independent.

For SAE (i.e., hunting-and-pecking), a coordinate can-
didate is computed at each iteration as the output of a
KDF (Listing 1, line 7), that is then converted to a BN.
At each iteration, this value is generated like the seed,
with additional deterministic processing. Hence, the same
consequences follow (c.f. subsection 4.2).

For SAE-PT (i.e., SSWU), implementations leak when
the coordinates computed by SSWU are set (in the func-
tion call line 8 and 12 of Listing 2). The leak may also
concern the input to these function calls, denoted u1 and
u2 in the code sample, as it is the output of the HKDF
(Listing 2 line 6 and line 10). All leaked values are
computed from the SSID, the password identifier and the
secret password.

Leakage Origin: Optimized Conversion. As described
in Listing 4, we consider the conversion function to take
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1 def bin2bn(buf , n) :
2 # Skip leading 0’s
3 while (buf [0] == 0)
4 n−−
5 buf++
6
7 bn = new bn()
8 while(n−−)
9 add byte to bn(buf , bn)

10
11 return bn

Listing 4: Binary to Big Number Algorithm

two arguments: the binary buffer and its byte-length.
Values in the buffer are considered secret. The routine is
straightforward: after some sanity checks (not displayed
in the code sample for conciseness), it converts the bytes
in buf into chunks in bn and returns the result.

To avoid processing leading bytes to zero, which does
not affect the final value, a quite common optimization
is to skip them before proceeding to conversion, thereby
decreasing the size of the buffer accordingly. Attackers
able to guess the number of iterations in the loop line 3
can thus deduce the effective byte-length of the secret.

Leakage Impact. The binary conversion function is
called on several occasions during the password con-
version process. The values we consider are uniformly
distributed on the range [0, 2n∗8) (with negligible bias).
Therefore, the k-leading bytes are zero with probability
pr = 1/256k, leaking k × 8 bits of information.

For SAE (Listing 1), three values are underlined: (i)
the first x-candidate; (ii) the final x-coordinate; and (iii)
its corresponding y-coordinate. The MSB of (i) and (ii)
may not be not independent, while MSB of (iii) is. Indeed,
attackers can leak information on x-candidates as long as
the observation they make is different from the one made
on the final x-value. This allows attackers to determine
whether the conversion was successful at the first iteration,
in addition to the MSB leakage.

In more detail, we distinguish two cases depending on
whether the leakage from (i) and (ii) is equal or distinct.
As a reminder, each iteration may convert the password
successfully with probability q/2p ≈ 0.5, with p and q
being parameters of the curve. In the case of equality,
attackers have to consider these values as equivalent.
Both values share a leading byte to zero if they are
equal (successful conversion at the first iteration occurs
with probability 0.5) or if they are different but share a
common leading byte. The probability of such an event
is pr = 0.5 · (1/256 + 1/2562), in which case attackers
would leak a total of 8 bits of information from both
observations. Otherwise, if the leaked bits differ, attackers
can infer that both values are different. Thus, they can de-
duce that the password was not converted during the first
iteration. This event occurs with probability 0.5, leaking
an additional bit of information. In the end, attackers learn
9 bits of information with probability pr = 255/2562.
Similar reasoning can be applied to subsequent iterations,
but the probability of leak quickly becomes negligible.

As for SAE-PT (Listing 2), two points are created
from the password. For each point, the two coordinates
are converted to BN when the resulting point is set. Each
coordinate is uniformly distributed on the curve, hence
each call would leak 8 bits with probability 1/256. The

same observation applies to the input of SSWU, resulting
in three independent leaking values at each call of SSWU.
Since it is called twice per run, we can expect a k× 8-bit
leakage with probability pr = 6/256k.

5. Experimental Results

The attack condition exploited in section 4 emerged
from different implementation weaknesses within three
popular projects: hostapd, FreeRadius and iwd. These
projects mostly rely on three cryptographic libraries for
their SAE (and EAP-pwd) operations: OpenSSL, WolfSSL
and ell. In this section, we study the details of the different
set_compressed_point_coordinate and bin2bn routines.
We find all three libraries to be affected by at least one
of the vulnerabilities we introduced in section 4. While
our identified flaws are exploitable in practice in all stud-
ied implementations, we only conduct our experiments
in real-world settings against wpa_supplicant interacting
with OpenSSL, which is the default installation in most
Linux distributions. Following the same approach, we
also demonstrated the 2-bit leakage on ell and a 1-bit
leakage on WolfSSL. For the sake of clarity, we detail
our experiments for OpenSSL only, and defer the reader
to appendix C for the additional experimental results.

Moreover, since SAE-PT is not widely deployed yet,
we solely focus on SAE with hunting-and-pecking in this
section. We also introduce a practical attack scenario and
perform a comparative study with previous works. We
defer our presentation of the impact of our attack on SAE-
PT to appendix A.

5.1. Vulnerable Implementations

As stated in section 4, the implementations of vulnera-
ble routines may vary between libraries. Here, we analyze
four open-source implementations of SAE, and notice
that a third-party library usually provides the routines.
We evaluated several open-source cryptographic libraries
supported by the studied SAE projects. We did not include
all the supported libraries. Instead, we only consider those
for which elliptic curve operations are implemented since
SAE specifically requires their support (with group 19 as
a minimal requirement [3]). Moreover, we did not look
into any proprietary project, such as the one running
on Windows. The list of evaluated implementations is
summarized in Table 1. We also note the average number
of leaked bits for each handshake execution.

All routines for set_compressed_point_coordinate

and bin2bn of OpenSSL [58], WolfSSL [59] and ell [38]
are described in Figure 1. Below, we go through all these
implementations to explore their flaws. We intentionally
exclude Apple CoreCrypto [10] routines, although its
generic point decompression function also leaks infor-
mation on the compression format. CoreCrypto, unlike
other libraries, provides its own implementation of SAE,
where the decompression is re-implemented internally in
a secret-independent fashion. In addition, the optimization
causing the second vulnerability is not used. This prevents
our attacks. We do not claim anything about the SAE
running in Apple systems, since this requires reverse en-
gineering efforts to determine whether it leverages Core-
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1 ec GFp simple set compressed coordinates(x, pt , ec) :
2 # Compute y candidate
3 y = ...
4 # Comply to input format
5 if ( BN is odd(y) != (pt & 1)):
6 if BN is zero(y):
7 # Handle special case
8 BN usub(y, ec.p, y)
9

10 P = EC POINT set affine coordinates(x, y)
11 return P
12
13 BN bin2bn(buf, n, bn):
14 # Skip leading zero’s
15 for ( ; n > 0 && *buf == 0; buf++, n−−):
16 continue
17 [...]
18 while (n−−):
19 # read the bytes in
20 [...]
21 bn correct top ( ret )
22 return ret
23 .

(a) OpenSSL v1.1.1n

wc ecc import point der ex(x, ec) :
pt = x[0]
# Compute y candidate
y = ...
# Comply to input format
if (mp isodd(y) and pt == 3) or

(not mp isodd(y) and pt = 4) :
P.y = mp mod(y, ec.p)

else :
P.y = mp submod(ec.p, y, ec.p)

return P

mp read unsigned bin(bn, buf, n) :
# Skip leading zero’s
while (c > 0 && b[0] == 0):

c−−; b++
[...]

mp zero (bn)
while (n−− > 0):

# read the bytes in
[...]

mp clamp (bn)
return MP OKAY

(b) WolfSSL v5.0.0-stable

l ecc point from data ( data , pt , ec) :
memcpy(P.x, data, ec .n)
if pt == 4:

ecc compute y(ec, P.y, P.x)
if (!( P.y[0] & 1)):

vli mod sub(P.y, ec .p, P.y, ec .p)
elif pt == 3:

ecc compute y(ec, P.y, P.x)
if (P.y[0] & 1):

vli mod sub(P.y, ec .p, P.y, ec .p)
return P

ecc be2native (bn, buf , n) :
uint64 t tmp[2 * L ECC MAX DIGITS]
for ( i = 0; i < n; i++)

tmp[n − 1 − i ] = l get be64(&buf[i ])
memcpy(dest, tmp, n * 8)

.

(c) ell v0.47

Figure 1: Implementation of the leaking function (set_compressed_point_coordinate and bin2bn) in various crypto-
graphic libraries. We extracted only the relevant part and simplified the code to save space. Importantly, pt represents
the point type, aka the compression type, which can be either 3 or 4 for compressed coordinates.

Cryptographic library

Ope
nS

SL

W
olf

SSL

ell Core
Cryp

to

Pr
oj

ec
t hostap • •

iwd •
FreeRadius† •
CoreCrypto •

Average leakage 4.2 1 1.5 2 0
Average leakage 4.3 0.094 0.094 0 0
† FreeRadius behaves differently than other Wi-Fi daemon, and leaks

more data on Vuln. 4.3 (0.131 bits on average)

TABLE 1: List of the studied SAE implementations, with
leveraged cryptographic libraries. Each • means that the
implementation supports the library. Last lines show the
average leakage (in bits) from a single session.

Crypto SAE. Next, we address the actual leakage in each
implementation.
OpenSSL (Figure 1a). The point decompression imple-
ments the naive approach described in subsection 4.2,
which leaks one bit of information for each execution,
namely whether the parity of y is equal to the parity
of pt. The condition line 6 might also leak if y is
zero, which happens with negligible probability for a
random point. The binary conversion skips the leading
zero bytes (line 15). In hostap, this function is called
on the three different secrets described in subsection 4.3,
thereby leaking 8 bits of information with probability
p = 1/256 + 0.5 · (1/256 + 1/2562), and 9 bits with
probability p = 255/2562 in each session (avg. 0.094
bits per session). In FreeRadius, the routine is called on
an additional independent secret, leaking more data (avg.
0.131 bits per session).
WolfSSL (Figure 1b). The point decompression leaks the
same information as OpenSSL. However, the if statement
(line 6-7) is valid if either condition is valid. Hence, upon

execution of line 8, attackers might guess which condition
was valid by observing if the function mp_isodd was
executed once (i.e., y is odd) or twice (i.e., y is even).
Here, attackers would learn the parity of both y and pt,
leaking two independent bits of information. The binary
conversion leaks exactly the same amount of information
as OpenSSL does, because of the optimization in line 15.

ell (Figure 1c). On one hand, the point decompression
leaks the most, since it goes through all the point decom-
pression in a switch over pt. Attackers can spy on the
executed case to learn pt parity. Then, they can spy on
the inner condition to guess the parity of y. Thus, they
can learn two independent bits of information for each
handshake execution. The binary conversion, on the other
hand, does not leak regarding the MSB of its input.

5.2. Practical Attack Against wpa supplicant

Now, we show the severity of the vulnerabilities by
recovering users’ passwords in a complete scenario with
the default settings in most Linux distributions. As shown
in Table 1, the vulnerability caused by point decompres-
sion is more practical, as it leaks more bits. Hence, we
detail our results regarding point decompression and defer
BN conversion presentation to appendix B.

5.2.1. Motivations and Setup. We illustrate the effec-
tiveness of our attack by targeting wpa supplicant ver-
sion 2.9, relying on OpenSSL version 1.1.1l, both be-
ing the most recent version at the time of testing. This
choice was guided to define our experiment settings as
close to default users’ installations as possible. Indeed,
OpenSSL is arguably the most deployed open-source
cryptographic library, installed by default in many Linux
distributions. Similarly, wpa supplicant is the default Wi-
Fi daemon on Debian-based systems (Ubuntu, Kali, etc.),
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Android, and Red Hat systems for the authentication
phase. Please refer to appendix B and appendix C for
further experiments on bin2bn on OpenSSL as well as
set_compressed_point_coordinate on WolfSSL and ell.

All tests were performed on a Dell XPS 13 7390
running on Ubuntu 20.04.2, kernel 5.13.0-39, with an
Intel(R) Core(TM) i7-10510U and 16 GB of RAM. All
binaries were compiled with gcc version 9.4.0 with all
default configurations (optimization included).

We considered the threat model described in subsec-
tion 3.2. Namely, we deployed an access point on an
Android phone (running Android 11 on a kernel v4.9.227-
perf+) to share network access. In addition, we kept
the default configuration on both ends, meaning the key
exchange uses group 19, corresponding to P256. Similar
results would have been observed with other curves. Our
spy process has been implemented using Mastik v.0.1-
alpha [69] to run the Flush+Reload and PDA processes.

5.2.2. Flush+Reload Gadget. We recall that attackers
need to successfully determine whether line 5 of Listing 3
has been executed. Despite being easily identifiable in
the source code, recovering this leak is challenging, since
the difference in the control flow only represents a few
instructions during the overall execution. Indeed, in the
set_compressed_point_coordinate function, the secret-
dependent branch to spy on is quite small; consisting of
a single call to an atomic arithmetic operation.

Limitation of Flush+Reload. The naive approach would
be to probe the instructions inside the branch in order to
detect their execution. Attackers would then periodically
flush and reload the memory line corresponding to the
shared instructions. A cache hit is observed only when the
victim uses the probe. To make leakage more reliable, and
measurements easier to acquire, it is common for attackers
to increase the workload by performing PDA on some
operations [6]. Here, we notice that the probed line is just
a few instructions after the branch. This implies that when
the execution gets to the branch, the instructions inside
the branch might be prefetched to the CPU execution
pipeline (thus into the cache) to save some time in case the
branch condition is satisfied. This prefetching may also be
caused by the spatial locality of the memory lines, since
it can be adjacent to the cache line computing the branch
condition. Hence, we expect, and empirically observe, that
the probed instructions are present in the cache, even
without being actually executed by the victim. This results
in a high false-positive ratio. Similar observations and
studies about spatial limitations of Flush+Reload were
considered in previous work, as discussed in section 2.3.

Our solution. To overcome this limitation, we designed a
gadget that turns the prefetching mechanism into a distin-
guisher, bypassing the spatial limitation of Flush+Reload.
The gadget works as follows. We probe the cache line
next to target instructions. In the meantime, we perform
a PDA to slow down the conditional instructions (usually
used as a probe), enough so that the next instructions are
prefetched into the cache multiple times. Thus, attackers
observe more cache hits if the secret-dependent branch
is executed. In our approach, the PDA creates the distin-
guishing behavior that we monitor with Flush+Reload.

50

150

250

TimeC
yc

le
s

to
re

lo
ad

(a) Branch taken

Time

(b) Branch not taken

Figure 2: Representation of a measurement when the
branch is executed (left) and not executed (right). The
red line is the threshold: each blue cross under the line
means that the victim has loaded the probe in the cache.

Applied to our case study, our distinguisher is de-
fined as follows: while probing line 6, we discernibly
obtain more hits when line 5 is executed. The reasons
are twofold. First, the PDA slows down the execution
of the conditional branch by evicting its instructions out
of the cache. Second, some CPU optimization gets the
probe back in the cache due to the spatial proximity with
the conditional branch. The repeated reloads cause hits,
constituting a characteristic behavior (refer to Figure 2).
As a side note, the number of cache hits may be used to
define a confidence coefficient to prune false positives and
avoid poisoning our dataset when working with a limited
number of traces.

Comparison with the Naive Approach. The naive ap-
proach consists in applying a PDA in order to increase the
latency between accesses to the probed instructions. This
achieves high temporal resolution while avoiding concur-
rent access to the probe. However, it was not able to get
any result in this context because of the mild instruction
discrepancy. In our attack, we rely on PDA differently to
overcome the spatial limitation of Flush+Reload, while
keeping a high temporal resolution. Indeed, we lever-
age the PDA to slow down the conditional instructions
(usually used as a probe) enough to make the prefetcher
load next instructions into the cache multiple times. The
outcome is more observed hits by the attacker.

Building the gadget. We experimentally confirmed the
efficiency of this approach by distinguishing the mild
instruction difference in three different cryptographic li-
braries. For each one, we built our gadgets the same way.
First, we identify the instructions we want to distinguish
and get their offset in the shared library. This can be found
with basic reverse engineering (e.g., using objdump) of the
targetted binary, and enables us to compute the address
we will constantly flush. Then, we define the probe on
the next cache line. In case the probe or the flush target
is always executed, the targeted instructions may need to
be readjusted (e.g., look for a cache line boundary, or
different distinguishing instructions). We emphasize that
the spatial proximity of the probe is more relevant than
its logical proximity, due to the observed prefetcher’s
behavior.

5.2.3. Attack Implementation. We target the OpenSSL
function ec_GFp_simple_set_compressed_coordinates,
represented in Figure 1a. We recall that, in SAE, this
function is executed at the end of the password conversion
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(Listing 1, line 13), after going through the 40 iterations
of the hunting-and-pecking.

Applying our gadget, we probed the call to
the function EC_POINT_set_affine_coordinates with
Flush+Reload, while performing a PDA on both the call
to BN_usub and its internal instructions. The PDA aims to
increase the latency of BN_usub by forcing the execution
pipeline to fetch our probe multiple times. On our binary,
the monitored instructions are located 101 bytes from
the call to BN_usub. This means that the probe, and the
conditional instructions, are at most one cache line apart,
and possibly on adjacent cache lines (considering 64-byte
lines). We suspect that such spatial proximity triggers
some CPU optimization to fetch in the next instructions.
Indeed, we notice that an execution where the parity of
pt and y is different results in more hits.

In practice, we observed an increase in the number of
hits by a factor of five to ten (going from a couple of
hits to about 10 hits or more). This difference is easily
recognizable, as shown in Figure 2. Here, the threshold
(horizontal red line) between a cache-hit and a cache-miss
is empirically defined by measuring the average loading
latency of each action. We can observe significantly more
hits (blue cross under the red threshold) when the call
to EC_POINT_set_affine_coordinates is executed (i.e.,
leaking that the parity is not equal). Finally, we attempted
to investigate the origin of this behavior caused by some
CPU optimization. Our guess was the prefetcher. However,
we still obtain the same results even after deactivating
the four CPU prefetchers documented in [37] (streamer,
Spatial, Data Cache Unit, and Instruction Pointer-based)
using Model-Specific Register (MSR) 0x14a.

5.2.4. Performance and Accuracy. As with any cache-
based attacks, our measurements are susceptible to system
noise and CPU optimizations. Therefore, multiple spied
observations are required for the same password and MAC
addresses to get dependable results. Below, we describe
our settings to assess the accuracy of our attack. We
conduct our evaluation with 20 different passwords. For
each run, we collect 20 traces, while varying one MAC
address. This gives a total of 400 samples.

Our findings show that our technique to overcome the
spatial limitations of Flush+Reload is rewarding. Indeed,
by discarding low confidence traces, we could exploit
365/400 samples, with only 10 miss-predictions, from
only two measurements per sample. Three measurements
with the same password and MAC addresses are enough
to achieve 100% of usability, and 100% of accuracy. Our
dataset is available in the PoC repository of our attack6.

Then, we continue our study by computing the average
number of hits for three measurements. Henceforth, we
refer to this value as the execution trace, or simply as a
trace. As explained previously, for OpenSSL, each trace
reveals one bit of information about the password.

5.3. Comparative Analysis of Previous Work

Table 2 sums up the average number of measurements
(i.e. SAE handshakes spied on) needed to prune all invalid
passwords of various dictionaries with high probability

6. https://gitlab.inria.fr/ddealmei/artifact dragondoom

[66] [21] This work
rockyou (1.4 · 107) 580 160 87
CrackStation (3.5 · 107) 600 170 90
HaveIBeenPwned (5.5 · 108) 680 200 102
8 characters (4.6 · 1014) 1060 320 159
Overall efficiency (D) 0.05 0.2 0.33

TABLE 2: Comparison of the number of the measure-
ments needed to prune all wrong passwords of various
dictionary for our attack and previous works. Last line
shows the overall efficiency of the attack as a ratio be-
tween the leakage per MAC address, and the number of
required measurements.

(p > 0.95), as described in subsection 3.4. We stress
that we consider not only the amount of bits leaked by a
handshake, but also the number of measurements required
to exploit it reliably. This is evaluated by the efficiency
criteria described in subsection 3.4, and computed in the
last line of Table 2. We only include the result of our attack
on OpenSSL in our comparative study. Recall that we
estimate that other libraries would leak more information,
and therefore have a better efficiency coefficient. Hence,
Table 2 reflects the worst-case scenario for our attack, and
we could expect better results on other implementations.
Yet, we still outperform [66] and [21].

With the cache-timing attack presented in [66], au-
thors learn whether the first iteration of the conversion
loop successfully finds an appropriate x-coordinate. They
needed to repeat their measurements up to 20 times to get
an exploitable leak. The theoretical vulnerability leaks 2
bits on average, but the provided PoC only leaks one bit.
Table 2 only takes into account their implemented attack,
since implementing their theoretical attack may need more
measurements. Our results reveal that our attack is about
6.67 times more efficient.

In [21], authors leak more information, as they were
able to get the exact iteration corresponding to the suc-
cessful password conversion. This additional leak allowed
attackers to obtain about 2 bits of information on average.
However, they still need 10 microarchitectural measure-
ments to get a reliable execution trace. Thus, although
our leakage per MAC address is less than [21], our attack
is still more efficient thanks to our precise measurements.

Our work, in addition to exploiting unstudied leakage
vector in WPA3, achieves better efficiency: it leaks one
bit of information per trace, with only 3 measurements
needed for each trace. It is worth noting that this only con-
cerns exploiting hunting-and-pecking in OpenSSL. Since
they may leak more bits, better results are obtained for
WolfSSL and ell. Moreover, the case of SSWU is quite
different for two reasons. First, attacks can only obtain
one execution trace, while spying on SAE-PT. Second, a
trace may leak more bits with lower probability (refer to
subsection 4.3). Consequently, this vulnerability is consid-
ered less practical, but it still provides important insight
into the difficulty of providing secret-independent imple-
mentations even for constant-time algorithms by design.
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6. Mitigation and Disclosure

6.1. Short Term Mitigation

The most common way to mitigate this type of vul-
nerability is to address them at the application-level,
with a secret-independent implementation. This approach
benefits from two major upsides: (i) the patch is often
simple; and (ii) the overhead is minimal and limited
to the particular application. It is important to highlight
that a peculiar aspect of our vulnerabilities lies in an
uncommon interaction between SAE and its cryptographic
provider. Indeed, for instance, in all the studied libraries,
the function setting a point coordinate never handles the
compression format as a secret.

Regarding point decompression, the mitigation is
similar in all the affected projects. Both potential
point coordinates must be computed, followed by a
constant-time selection. After our disclosure, this so-
lution has been implemented by hostap, FreeRadius
and iwd. It is worth noting that the original routines
set_compressed_point_coordinate in OpenSSL, Wolf-
SSL and ell still branch on the compression format.

Unlike point decompression, for the BN conversion
vulnerability, we included the cryptographic libraries in
our disclosure, namely OpenSSL and WolfSSL. This is
because such libraries encapsulate the definition of the BN
structure. Thus, any related code is reasonably expected
to be patched by the concerned libraries. Both OpenSSL
and WolfSSL acknowledged that their BN operations are
leaky, but refused to patch. Indeed, they argued that it
is upon developers’ responsibility to avoid calling these
functions with secret-dependent values.

This strategy, as convenient as it might seem, is prone
to error and only provides relative security (as demon-
strated by these vulnerabilities, despite previous miti-
gations). An implementation bringing formal guarantees
regarding the secret independence would provide a more
sustainable solution.

6.2. Dragonstar: Formally Verified Cryptography
for Dragonfly

The root cause of the attacks relies upon the use of
cryptographic libraries that are not secret-independent. To
address this, we built a plugin for hostap, where all the
cryptographic calls within SAE redirect to the HACL*
formally verified library. Below, we briefly outline our
implementation and its use of HACL*.

hostap structure. As with most projects of such size,
hostap defines multiple abstractions layers. In particu-
lar, all cryptographic operations are processed through a
common cryptographic API. This enables a very modular
approach and eases the support of new libraries. Adding
a new library can be done by implementing an interface
between the common API and the underlying library for
all required functions.

We provided an implementation of the cryptographic
API using functions from the HACL* cryptographic li-
brary. In particular, we use verified code for the HMAC-
SHA256 message authentication code, the NIST P-256
elliptic curve, and the generic BN library. To provide

val decompress: input: lbuffer uint8 33ul → result: lbuffer uint8 64ul
→ Stack bool
(requires fun h → live h input ∧ live h result ∧ disjoint input result)
(ensures fun h0 success h1 →

let compressed = as seq h0 input in
let uncompressed = as seq h1 result in
(uncompressed,success) == decompress spec compressed ∧
modifies (loc result) h0 h1)

Listing 5: F* type for the point decompression.

support to the required API, we worked to expose several
internal HACL* functions and implement optimizations.
In total, we wrap 28 verified functions from HACL* and
the code to meet hostap’s cryptographic API.

Using verified cryptography from HaCl*. All the code
we use from HACL* is verified for correctness, memory
safety, and secret independence. For example, the point
decompression function in HACL* is verified to have the
F* type given in Listing 5.

This function takes a compressed point (input) and
decompresses it into result, returning a boolean indicat-
ing success or failure. Both the input and the result are
fixed-length arrays (lbuffer) that are assumed to contain
secret bytes, indicated by the type uint8. By default,
we treat all bytes and integers as secrets; if an array
is known to contain only public bytes, we would use
pub_uint8 instead of uint8. Hence, the type given to
input constrains the code of the decompress function to
treat the contents of input and any value derived from
input as opaque secret values. Branching on the parity of
the y-coordinate, for example, would result in a type error,
since secret bytes do not have a comparison operation. In
other words, the type of input ensures that the code must
be secret-independent with respect to its contents.

In addition to secret independence, the type above also
enforces memory safety and correctness. The function
is in the Stack effect, indicating that it only uses the
stack and does not allocate or free any memory in the
heap. The precondition (requires) states that the input

and result arrays point to valid disjoint locations in the
heap. The post-condition (ensures) says that the output of
decompress matches its spec decompress_spec and that
the function only modifies the result array.

Similarly to point decompression, the BN conversion
function in HACL* (bn_from_bytes_be) is verified to be
secret independent. In particular, it does not strip leading
zeroes and produces a fixed-size BN.

Consequently, by using verified functions from
HACL*, we eliminate the two leaks we have explored
in this paper, and more generally, we formally guarantee
the absence of a large class of timing attacks on our code.
Related limitations are discussed in section 7.

Benchmark. All benchmarks have been performed using
the tool perf on the same set of inputs while fixing all
random values. The setup is the same as described in sub-
subsection 5.2.1. We repeated experiments on 20 different
passwords, with fixed MAC addresses and password iden-
tifier. Then, we computed the number of cycles required to
establish 1,000 sessions with each password. For SAE-PT,
we generated the point PT once for each password, and
reused the pre-computed value in all subsequent session
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Figure 3: Performance comparison of our implementation
and OpenSSL implementation. All results are obtained
by repeating the Dragonfly handshake 1000 times for 20
different passwords. For SAE-PT, we compute PT only
once per password, as intended by the specification.

establishment, as intended by the standard. Thus, repeated
sessions smoothed the initial cost of computing PT.

Figure 3 represents the average number of cycles
needed to perform a Dragonfly handshake using hostap for
both SAE and SAE-PT. Here, we compare our HACL*-
based implementation with OpenSSL, the default cryp-
tographic library in most settings. We also include the
OpenSSL build with no assembly code (i.e., noasm).

We highlight two main findings. First, SAE-PT is
always faster than SAE. This can be explained by the
fact that PT is only computed once. In addition, the
mitigations implemented by hunting-and-pecking require
to loop over the conversion a fixed number of times,
implying dummy iterations. In contrast, SSWU offers a
linear workflow with a single conversion, and arithmetic
optimizations. Second, HACL* constitutes a good alter-
native to OpenSSL. Indeed, HACL* is not only formally
proved to be secret-independent, but also provides decent
efficiency. It outperforms OpenSSL noasm for both SAE
and SAE-PT. However, it is slower when assembly code
leveraging specialized CPU instructions is used.

7. Discussion

Is SSWU Worth it? SSWU is proposed as a superior al-
ternative in WPA3 both in terms of efficiency and security.
Indeed, SSWU is a deterministic mapping, which means
that it does not suffer from the inherent secret-dependence
issue of a probabilistic approach such as hunting-and-
pecking. Moreover, the ongoing standardization process
of hash-to-curve functions provides a straightforward and
secret-independent implementation of SSWU. Neverthe-
less, we show that vulnerabilities still sneak into deployed
implementations of SSWU. The identified vulnerability is
indeed less exploitable in practice, but we still provide
important insight regarding the use of third-party libraries.
Indeed, although capital, secret-independent design is not
enough if the low-level operations (e.g., arithmetic ones)
are leaky. Despite our vulnerability, we still believe that
SSWU offers better security to settle the cat-and-mouse
SCA concerns about Dragonfly.
Is There Any Side-Channel Left? WPA3 relies heav-
ily on BN routines that are not secret independent in
OpenSSL. This leakage vector has been extensively stud-
ied in [67]. We noticed multiple secret dependence in
low-level arithmetic functions, but assessing their ex-
ploitability is arduous, which motivated us to provide
a secure alternative. However, as many guarantees as

HACL* brings, secret independence does not eliminate all
side-channel attacks. In particular, HACL* and therefore,
our code may still be vulnerable to fault-injection, or
transient execution attacks. New approaches for verifying
code against advanced side-channels are still under active
development [13], [14]. For example, the domain-specific
language FaCT [18] recently evolved to provide guaran-
tees against transient execution attacks [56]. If and when
mitigations and verification techniques for such attacks get
incorporated into HACL*, our implementation will benefit
from these defenses automatically. We also note that we do
not yet provide a full proof of correctness for Dragonstar
with respect to the Dragonfly specification. Instead, only
the cryptographic provider is proved secure, which means
that other flaws can still sneak into the base code. Our
approach does come with an important practical advantage
since it allows smooth integration into existing Wi-Fi dae-
mons. Indeed, Dragonstar fits the cryptographic-provider
structure of hostap, requiring only a minimal change to
the existing project. Because the password conversion
methods are implemented in the core of hostap, a verified
implementation of such routines would have resulted in
substantial changes, and integration of generated code
which is hard to understand and maintain.

8. Related Work

Cache-attacks on cryptographic implementations. In
the last decades, numerous works exploited side-channels
to break cryptographic implementations. Notably, cache-
based side-channel has become a recurrent exploit tool,
as shown by the extensive study of Lou et al. [41]. They
can be classified into two families: PRIME+PROBE [4],
[40], [44]–[46], [52] and Flush+Reload [6], [31], [71].
In practice, Flush+Reload has been applied in various
contexts to leak information on RSA private keys [5], [16],
[30], [71] and (EC)DSA nonces [11], [15], [28]–[30], [55],
[61], [70]. In our work, we focus on Dragonfly of WPA3
and show that, similar to any PAKE, it is fragile to any
form of leakage due to the low entropy of passwords.

Attacks on PAKE. Recent contributions show a grow-
ing interest on the study of PAKE implementations,
such as SRP [22], [53] or more recent design such as
OPAQUE [39]. Importantly, after the standardization of
Dragonfly in WPA3, several works took a look into SAE
implementations and interactions with the network [19],
[21], [42], [43], [62], [66]. Of particular interest, they
unveiled multiple vulnerabilities including microarchitec-
tural leaks [21], [66] in different widespread implementa-
tions. Previous contributions focused on the Wi-Fi daemon
layer implementations of Dragonfly, overlooking its inter-
actions with the cryptographic libraries. In our work, we
dig deeper and identify some secret leakage caused by the
inner implementations of the cryptographic libraries. Our
identified vulnerabilities do not only concern the hunting-
and-pecking, but also the recently standardized SSWU.
Moreover, we did not only consider proposing some quick
patches but also implementing a formally proved secret-
independent component that provides all the required
cryptographic routines in Dragonfly. To the best of our
knowledge, other symmetric PAKEs, like CPace [32], have
not been targeted by such attacks.
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Formally verified implementations. Many works have
advocated using formal verification to guarantee the cor-
rectness and security of cryptographic libraries and proto-
col implementations (see [12] for a detailed survey). Fiat-
Crypto [23] and Cryptoline [27] can be used to verify
field arithmetic (BN) functions in C and assembly for
correctness, but not for secret independence. The SAW
workbench [60] and Coq prover [54] have been used to
verify full crypto algorithms in C and Java, including
selected elliptic curves, for correctness but not for secret
independence. Vale [26] and Jasmin [9] have been used
to verify both the correctness and secret independence
of some crypto algorithms in Intel assembly. To our
knowledge, HACL* is the only verified crypto library
that includes all required algorithms (including HMAC-
SHA256 and NIST P-256) and verifies both functional
correctness and secret independence. In addition, opting
for HACL*, we benefit from its maintainers’ experience
to recommend the best strategy of build/update in real
projects, as they already do for Mozilla and Wireguard.

9. Conclusion

We claim that our work is not yet-another-attack
against WPA3. Indeed, first, we uncover new vulnera-
bilities in WPA3 implementations that were extensively
analyzed either manually or using dedicated tools to check
their constant-time nature. This includes the first side-
channel attack against the recently deployed SAE-PT.
Second, we provide insight that cryptographic libraries do
not consider constant-time code regarding several func-
tions (e.g., compression and bin-to-bn conversion). These
functions remained unstudied since they are mostly used
with public parameters. Our paper shows that WPA3 calls
these functions with secret-dependent values. Third, we
explain how to recover the password from the leaked bits.
Last, we address this wide attack vector by implementing
a provider where all the called functions with secrets are
proved secret-independent. In our work, we did not only
point out vulnerabilities but also implemented PoCs and
conducted experiments to demonstrate the effectiveness
of our attack in real-world settings. This involved a novel
Flush+Reload gadget to overcome the spatial resolution
limitation of the vanilla attack. Our benchmarks show
that Dragondoom is both more efficient (requiring fewer
side-channel measurements) than previous attacks and
applicable to wider settings (including SSWU). A long-
term lesson of our paper is to underline the limitation of
former analysis when disregarding interactions with third-
party libraries. Formally verifying large implementations
is daunting if we require to dig deeper each time an
abstraction layer is defined.

Thus, instead of verifying existing implementations,
we tackle the issue from the other end and provide Drag-
onstar, bringing guarantees on the mathematical opera-
tions used in Dragonfly for both hunting-and-pecking and
SSWU. Our work shows that we can compose the low-
level guarantees of HACL* with the sophisticated techni-
cal details of WPA3 to obtain a verified cryptographic
provider that can be deployed in real-work project as
drop-in replacement of OpenSSL. It is true that providing
a complete implementation in F* would have offered
stronger guarantees, but we argue that our approach of

relying on formally-verified modules fits better the need
for large modular projects down to the level of code.
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A. Attack on SAE-PT

Since SAE-PT does not involve a call to the point
decompression method, the first vulnerability (subsec-
tion 4.2) does not apply. However, hostap with both
OpenSSL and WolfSSL suffers from the same leakage
with the second vulnerability.

Indeed, hostap calls the bin2bn routine on six indepen-
dent secrets along the hash-to-element method: the input
of SSWU and both point coordinates output (SSWU is
repeated twice, hence the six occurrences). As described
in subsection 4.3, this would allow attackers to get k × 8
bits of information with probability 6/256k.

Interestingly, the identifier is not attacker-controlled
since it is set in a configuration file and not shared on
the network, and the SSID cannot be change without

the client noticing. Hence, attackers cannot arbitrarily
modified public values involved in the computation. This
greatly limit the attackers ability to aggregate information
by repeating the measurements. The only element they
may vary is the curve used for the derivation.

The standard allows support for up to three different
curves, and both WolfSSL and OpenSSL support all of
them. Hence, attackers may repeat this measurement up to
three times, meaning they could leak 8 bit of information
with a probability p = 18/256, or in 7% of the cases.
This leakage expands to 16 bits in approximately 0.03%
of the cases, which is still relevant considering the wide
deployment of WPA3.

On the other hand, ell is not affected since it does
not provide the conversion optimization. FreeRadius does
not implement SSWU. Experimental results on the bin2bn

conversion methods are presented in appendix B.

B. Experiments on bin2bn

The second vulnerability, affecting both WolfSSL
and OpenSSL bin2bn function, may be exploited using
the same Flush+Reload-gadget described in subsubsec-
tion 5.2.2, using the number of cache-hits as an indicator
to learn how many leading bytes are skipped.
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Figure 4: Average cache-hits in bin2bn for different num-
bers of leading zero.
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Figure 4 represents the average number of hits per
measurement, for both OpenSSL and WolfSSL conversion
functions. The different curves represent an increasing
number of leading zero bytes. We only measured up o
two leading zero bytes, as the probability of having more
zero leading bytes quickly decreases in our context, as
the value is expected to be uniformly distributed. For
both implementations, the curves show a clear pattern: the
more leading zero bytes, the more hits we observe. Each
distribution is the result of our attack on 300 samples,
executed on 32-byte value to represent a classical use of
the function when processing P256-related values.

C. Experiments on set compressed point

For all libraries, we confirmed the leakage in the
point set_compressed_point_coordinate function. The
experimentation settings, challenges, solutions and results
for OpenSSL are presented in detail in subsection 5.2.
We followed the same process on WolfSSL and ell, and
present our experimental results hereafter. Namely, we
face the same challenges regarding the spatial limitation
of classical Flush+Reload, and leverage the gadget de-
scribed in subsubsection 5.2.2 to leak information on the
set_compressed_point_coordinate.

In both settings, the libraries were compiled for re-
lease, including optimizations. We made measurements
with 200 different points resulting in an odd y coordinate
and 200 points resulting in an even y coordinate. For
each point, we repeated to measurement 5 times and keep
the average number of hits to smooth out any noise. The
results are depicted in Figure 5 and Figure 6, for ell and
WolfSSL, respectively.

ell. For ell, we detailed a more potent leakage, as we
can learn both the value of the compression format, and
whether it has the same parity as y. Both leakages are
caused by branching on the secret values, which we can
observe using our gadget. The results are displayed in
Figure 5, yielding distinguishable distributions, allowing
an attacker to leak the 2 bits of information.

WolfSSL. We applied our gadget to infer the outcome
of the check at line 6-7 (Figure 1b). Accurately distin-
guishing the outcome of this branch allows an attacker
to learn if the y coordinate and the compression format
have the same parity. Both being the outcome of random
oracle seeded with password-related value, this leaks 1 bit
of information. Figure 6 displays two distinct distributions
of cache hits when the branch is taken or not. The slight
overlapping may be compensated by performing more
measurements.

0 5 10 15 20 25 30
Cache hits

0.0

0.1

0.2

0.3

0.4

0.5

De
ns

ity

branch
no branch

(a) Congruence of y and compression format.
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Figure 5: Density of the number of cache hits in ell for
exploiting the two leakages.
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Figure 6: Density of the number of cache hits on the
probe when the compression format and the y coordinate
have the same parity (blue) or different parity (orange) for
WolfSSL.
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