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ABSTRACT
Recently, the Dragonblood attacks have attracted new interests
on the security of WPA-3 implementation and in particular on the
Dragonfly code deployed onmany open-source libraries. One attack
concerns the protection of users passwords during authentication.
In the Password Authentication Key Exchange (PAKE) protocol
called Dragonfly, the secret, namely the password, is mapped to an
elliptic curve point. This operation is sensitive, as it involves the
secret password, and therefore its resistance against side-channel
attacks is of utmost importance. Following the initial disclosure of
Dragonblood, we notice that this particular attack has been partially
patched by only a few implementations.

In this work, we show that the patches implemented after the
disclosure of Dragonblood are insufficient. We took advantage of
state-of-the-art techniques to extend the original attack, demon-
strating that we are able to recover the password with only a third
of the measurements needed in Dragonblood attack. We mainly
apply our attack on two open-source projects: iwd (iNet Wireless
Daemon) and FreeRADIUS, in order underline the practicability of
our attack. Indeed, the iwd package, written by Intel, is already de-
ployed in the Arch Linux distribution, which is well-known among
security experts, and aims to offer an alternative to wpa_supplicant.
As for FreeRADIUS, it is widely deployed and well-maintained up-
stream open-source project. We publish a full Proof of Concept
of our attack, and actively participated in the process of patching
the vulnerable code. Here, in a backward compatibility perspective,
we advise the use of a branch-free implementation as a mitigation
technique, as what was used in hostapd, due to its quite simplicity
and its negligible incurred overhead.
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1 INTRODUCTION
1.1 Context and Motivation
Fourteen years after the implementation of WPA2, the WPA3 pro-
tocol was introduced by the Wi-Fi Alliance in early January 2018.
WPA3 was much anticipated after severe weaknesses identified in
WPA2 in Fall 2017 using key reinstallation attacks (KRACKs) [34].
WPA3 aims at improving authentication and encryption during con-
nections. Indeed, it replaces Pre-Shared Key (PSK) authentication
by WPA3-SAE (Simultaneous Authentication of Equals). Unlike
PSK, SAE resists offline dictionary attacks; namely the only way
for an attacker to guess a password is through repeated trials. A
security requirement is that each trial must only reveal one single
password, thereby forcing online attacks that can be easily miti-
gated through, for instance, limiting authentication attempts. Thus,
SAE, which is a variant of the Dragonfly handshake, is considered
as a major addition to WPA3. SAE is defined in the standard IEEE
802.11-2016 [1], that implements a slight variant the Dragonfly RFC
defined in [16].

Nevertheless, some researchers cast some doubt on the guar-
antees promised by SAE and Dragonfly [21, 22, 24, 29]. In 2019,
Vanhoef and Ronen identified a set of vulnerabilities inWPA3 imple-
mentations, especially against its password-encoding method [35].
Along with the vulnerability, they present a collection of attacks,
along with appropriate mitigations. Among their attacks, some
exploit both timing and cache side-channels in order to leak some
information. Then, they show how the leak is related to the targeted
password, and mount an offline dictionary attack accordingly. The
disclosure of Dragonblood is unfortunate to the Wi-Fi Alliance that
has just got its biggest update in 14 years. However, this did not
discourage vendors to continue their WPA3 adoption, especially
that KRACKs of WPA2 is more serious, since it concerns the stan-
dard itself, while Dragonblood mainly leverages implementation
weaknesses related to side-channel leaks. In response, the Wi-Fi Al-
liance published some implementation guidance to be followed by
manufacturers [5] to ensure secure backward compatible WPA3’s
implementations. Authors in [35] cast doubts on the endorsement
of some backwards-compatible side-channel defenses, especially in
the context of resource-constrained devices because of their high
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overhead. Moreover, they argue that a secure implementation of
the countermeasures is an arduous task.

In this paper, we focus on the recommendations related to Cache-
Based Elliptic Curve Side-Channels in [5], which address mitigations
to the set of Dragonblood vulnerabilities related to cache-based at-
tacks. Two mitigations are underlined: (i) performing extra dummy
iterations on random data, and (ii) blinding the calculation of the
quadratic residue test. For the first mitigation, the RFC 7664 [16]
recommends that 40 iterations are always executed even if the
password was successfully encoded requiring fewer iterations. Con-
cerning the second mitigation, a blinding scheme is suggested for
the function determining whether or not a value is a quadratic
residue modulo a prime.

1.2 Our Contribution
In our paper, we show that such countermeasures are not enough
to defend against cache-based side-channel attacks. In fact, these
particular measures are designed to prevent only a part of Drag-
onblood’s attacks, and does not affect one of them. Especially, the
cache attack leveraging a password dependent control-flow of loop
in the try-and-increment conversion function is neither discussed
in this document, nor patched in most implementations (except
for hostapd, which was the direct target of the original attack).
We aim to raise awareness about this particular attack, and prove
that we can extend it to gain additional information, with fewer
measurements. To this end, we identify several implementations in
which some code is executed only during the iteration where the
password was correctly converted (or encoded). We show how an
attacker can use cache attacks in order to leak some information on
the password. We stress that the original Dragonblood attacks are
still applicable on such implementations. However, our work takes
a step further by leveraging some state-of-the-art techniques that
improve the attack performance without changing the underlying
threat model.

Indeed, we extend the original attack in which only the outcome
of the first iteration is leaked. Using an unprivileged spyware, we
demonstrate that attackers are able to learn the exact iteration
where the first successful conversion occurred with high probabil-
ity. We achieve this result by monitoring well-chosen memory-lines
with a Flush+Reload attack [38] to keep track of each iteration,
and the success-specific code. We enhanced the reliability of our
measurements by combing the attack to a Performance Degradation
Attack (PDA) [4]. Since the successful iteration is directly related
to key exchange context (defined by both MAC addresses and the
password), this leakage allows attackers to significantly reduce
the number of measurements needed to recover the password. For
instance, only 160 measurements are required in order to discard
all the wrong passwords using the Rockyou dictionary [25], while
Dragonblood needs 580 measurements. Roughly, we cut down the
number of measurements by three, which makes our attack per-
forms better in practice.

We apply our findings on the wireless daemon iwd (iNet Wire-
less Daemon) that aims to replace wpa_supplicant. Ironically, iwd
is written by Intel and our identified vulnerabilities in their imple-
mentation are caused by Intel cache design. The version 1.0 was
released in October 2019 (after the publication of Dragonblood) and

it is already adopted by Arch Linux and Gentoo. We also extend
our work to FreeRADIUS, which a widely deployed project used by
millions of users 1. We have not only communicated our findings to
the maintainers of these two open-source projects, but also helped
them to patch the vulnerable code.

The underlying technical details are quite similar concerning the
identified vulnerability in iwd and FreeRADIUS. Therefore, for the
sake of clarity and brevity, we will only detail the iwd case in the
core of this paper. The FreeRADIUS case id discussed in Appendix C)
in order to highlight the specificity of their implementation. In
summary, we make the following main contributions:

• We extended the original Dragonblood attack to recover not
only the outcome of the first round, but the iteration yielding
a successful conversion (see Section 3).

• We estimated the theoretical complexity of our attack and
compared it to the original one (see Section 3.5).

• We implemented a Proof of Concept of our attack, presenting
practical results (see Section 4).

• We implemented mitigations and evaluated the overhead
(see Section 5.1).

• We made all our code available2, from the testing environ-
ment setup using Docker, to the password recovery script.

Our attack illustrates the danger of overlooking a widely poten-
tial attack during a standardization process. Therefore, we hope that
our work would raise awareness concerning the need of constant-
time algorithms by design that do not rely on savvy developers to
provide secure implementations of ad-hoc mitigations.

1.3 Attack Scenario
We suppose a classical infrastructure where clients communicate
with an access point (AP) across a wireless network. The goal of
the attacker is to steal the password used to establish a secure
communication with the AP. Once the password is compromised,
the attacker can enter the network and perform malicious activities.

In order to leverage the vulnerabilities defined in this paper, the
attacker requires to perform two tasks. First, they need to install a
spy daemon on a client station without any particular privilege. Sec-
ond, they need to create a rogue AP that behaves as the legitimate
AP, but can use different MAC addresses for different connections.

Of course, we suppose that the rogue AP does not know the
correct password, and therefore any session establishment between
the rogue AP and a valid client will fail. Here, the goal of the rogue
AP is to state different MAC addresses and to trick a client device
to start a Dragonfly key exchange. Thus, the Wi-Fi daemon, using
the correct password, will perform some operations that will be
monitored by the attacker spy process. For each of these (failed)
connections, the spywill generate a new trace that leaks the number
of iterations needed to successfully encode the password. These bits
of information are then used offline in order to prune a dictionary
by verifying the number of iterations needed for each password.
Each trace, with a different MAC address, yields a different iteration
number. In our paper, we estimate that attackers require 16 traces
to prune, for instance, the entire Rockyou dictionary. It is worth
noting that, in our work, a trace generation needs 10 measurements

1https://freeradius.org/about/#usage_statistics
2https://gitlab.inria.fr/ddealmei/poc-iwd-acsac2020/-/tree/master/
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with the same MAC address in order to guarantee a high accurate
leakage.

1.4 Responsible Disclosure
Our attacks were performed on the most updated version of iwd
and FreeRADIUS, as published at the time of discovery. We com-
piled both libraries using their default compilation flags, leaving all
side-channel countermeasures in place. We reported our findings to
the maintainers of iwd and FreeRADIUS following the practice of
responsible disclosure. We further actively participated in coding as
well as the empirical verification of the proposed countermeasures.
Correspondingly, three patches were committed on the vulnerable
projects: on iwd3, ell4 (the underlying cryptographic library of iwd,
also maintained by Intel), and FreeRadius5. On a side note, iwd
maintainers prefered not to scrupulously respect the recommen-
dations of the RFC 7664 [16] by fixing the number of iterations to
30 (instead of 40). Moreover, we received special thanks from Alan
Dekok, the project leader of FreeRADIUS, for our disclosure of the
issue, and for helping with creating and verifying the fix.

We did not issue any communication to the Wi-Fi Alliance, since
the identified vulnerability is mainly caused by implementation
flaws, and not the standard itself.

2 BACKGROUND
In this section, we introduce the Dragonfly protocol, and describe
the variant currently used in WPA3 and EAP-pwd.

2.1 The Dragonfly Key Exchange
Dragonfly is part of the Password Authenticated Key Exchange
(PAKE) family. Its purpose is to use a low entropy password as
an authentication medium, and to derive some high entropy cryp-
tographic material from it. An important security requirement of
PAKE protocols is to avoid offline dictionary attack: the only way
an attacker should be able to get information about the password
is to run the protocol with a guess and observe the outcome. Since
Dragonfly is a symmetric PAKE, each party knows the password
before initiating the protocol.

Dragonfly has been designed by Dan Harkins in 2008. In 2012, it
has been submitted to the CFRG as a candidate standard for general
internet use. This standardization ended up in 2015 by the release of
RFC 7664 [16]. Along with the protocol described in this standard,
some other variants have been included in other protocols, such as
TLS-pwd [19], WPA3 [1] or EAP-pwd [40]. These variants mainly
differ by instantiation details, such as some constant values.

The security of Dragonfly is based on the discrete logarithm
problem. Implementations can therefore rely on either Finite Field
Cryptography (FFC) over multiplicative groups modulo a prime
(MODP groups) or Elliptic Curve Cryptography (ECC) over prime
field (using ECP groups). The exact workflow of the Dragonfly hand-
shake varies slightly depending on the underlying group (ECP/-
MODP). In order to avoid confusion, we adopt a classic elliptic curve
3https://git.kernel.org/pub/scm/network/wireless/iwd.git/commit/?id=
211f7dde6e87b4ab52430c983ed75b377f2e49f1
4https://git.kernel.org/pub/scm/libs/ell/ell.git/commit/?id=
47c2afeec967b83ac53b5d13e8f2dc737572567b
5https://github.com/FreeRADIUS/freeradius-server/commit/
6f0e0aca4f4e614eea4ce10e226aed73ed4ab68b

notation: 𝐺 is the generator of a group, with order 𝑞. Lowercase
denotes scalars and uppercase denotes group element. For elliptic
curve, we assume the equation to be in the short Weirestrass form
𝑦2 = 𝑥3 + 𝑎𝑥 +𝑏 mod 𝑝 where 𝑎, 𝑏 and 𝑝 are curve-dependent and
𝑝 is prime.

The protocol follows the same workflow for both side, meaning it
can be performed simultaneously by both side, without attributing
a role. It can be broken down into three main parts: (i) password
derivation; (ii) password commitment; and (iii) confirmation.

Following the disclosure of Dragonblood attack [35] in 2019,
both the Wi-Fi standard [17] and EAP-pwd [18] are updating the
password derivation function of Dragonfly. Due to the fact that
updates are long to be approved, and even longer to be deployed,
current implementations of WPA3 still use the original derivation
function, as described in [16]. In this section, we will focus on
currently deployed implementations, hence the original design.

2.1.1 Password derivation. First, both the sender and the receiver
need to convert the shared password into a group element. To do so,
the standard describes a try-and-increment method called Hunting
and Pecking. This approach consists in hashing the password along
with the identity of both parties and a counter until the result-
ing value corresponds to a group element. For MODP groups, this
method, called hash-to-group, converts the password into an inte-
ger modulo 𝑝 . For ECP groups, the method, called hash-to-curve,
converts the password into the x-coordinates of an elliptic curve
point. The y-coordinate is chosen at the end from the parity of the
digest. The pseudocode describing this process on ECP groups is
summed-up in Listing 1.
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of iterations needed to successfully encode the password. These bits
of information are then used offline in order to prune a dictionary
by verifying the number of iterations needed for each password.
Each trace, with a different MAC address, yields a different iteration
number. In our paper, we estimate that attackers require 16 traces
to prune, for instance, the entire Rockyou dictionary. It is worth
noting that, in our work, a trace generation needs 10 measurements
with the same MAC address in order to guarantee a high accurate
leakage.

1.4 Responsible Disclosure
Our attacks were performed on the most updated version of iwd
and FreeRADIUS, as published at the time of discovery. We com-
piled both libraries using their default compilation flags, leaving all
side-channel countermeasures in place. We reported our findings to
the maintainers of iwd and FreeRADIUS following the practice of
responsible disclosure. We further actively participated in coding as
well as the empirical verification of the proposed countermeasures.
Correspondingly, three patches were committed on the vulnerable
projects: on iwd3, ell4 (the underlying cryptographic library of iwd,
also maintained by Intel), and FreeRadius5. On a side note, iwd
maintainers prefered not to scrupulously respect the recommen-
dations of the RFC 7664 [16] by fixing the number of iterations to
30 (instead of 40). Moreover, we received special thanks from Alan
Dekok, the project leader of FreeRADIUS, for our disclosure of the
issue, and for helping with creating and verifying the fix.

We did not issue any communication to the Wi-Fi Alliance, since
the identified vulnerability is mainly caused by implementation
flaws, and not the standard itself.

2 BACKGROUND
In this section, we introduce the Dragonfly protocol, and describe
the variant currently used in WPA3 and EAP-pwd.

2.1 The Dragonfly Key Exchange
Dragonfly is part of the Password Authenticated Key Exchange
(PAKE) family. Its purpose is to use a low entropy password as
an authentication medium, and to derive some high entropy cryp-
tographic material from it. An important security requirement of
PAKE protocols is to avoid offline dictionary attack: the only way
an attacker should be able to get information about the password
is to run the protocol with a guess and observe the outcome. Since
Dragonfly is a symmetric PAKE, each party knows the password
before initiating the protocol.

Dragonfly has been designed by Dan Harkins in 2008. In 2012, it
has been submitted to the CFRG as a candidate standard for general
internet use. This standardization ended up in 2015 by the release of
RFC 7664 [16]. Along with the protocol described in this standard,
some other variants have been included in other protocols, such as
TLS-pwd [19], WPA3 [1] or EAP-pwd [40]. These variants mainly
differ by instantiation details, such as some constant values.
3https://git.kernel.org/pub/scm/network/wireless/iwd.git/commit/?id=
211f7dde6e87b4ab52430c983ed75b377f2e49f1
4https://git.kernel.org/pub/scm/libs/ell/ell.git/commit/?id=
47c2afeec967b83ac53b5d13e8f2dc737572567b
5https://github.com/FreeRADIUS/freeradius-server/commit/
6f0e0aca4f4e614eea4ce10e226aed73ed4ab68b

1 def hash2curve(pwd, id1 , id2 ) :
2 found, counter = False , 0
3 A, B = max(id1, id2 ) , min(id1 , id2 )
4 while counter < k or not found:
5 counter += 1
6 base = Hash(A || B || pwd || counter)
7 seed = KDF(base, label_1, p)
8 if is_quadratic_residue (seed^3 + a∗seed + b, p) :
9 if found == False :
10 x, save , found = seed , base , True
11 # Not described in the RFC, but implemented in SAE
12 pwd = random(32)
13 y = sqrt (x^3 + ax + b)
14 P = (x, y) if lsb (y) == lsb (save) else (x, p−y)
15
16 return P

Listing 1: Hunting and Pecking on ECP group as used in
WPA3. The value of label_1 and k may vary along with the
implementation.

The security of Dragonfly is based on the discrete logarithm
problem. Implementations can therefore rely on either Finite Field
Cryptography (FFC) over multiplicative groups modulo a prime
(MODP groups) or Elliptic Curve Cryptography (ECC) over prime
field (using ECP groups). The exact workflow of the Dragonfly hand-
shake varies slightly depending on the underlying group (ECP/-
MODP). In order to avoid confusion, we adopt a classic elliptic curve
notation: 𝐺 is the generator of a group, with order 𝑞. Lowercase
denotes scalars and uppercase denotes group element. For elliptic
curve, we assume the equation to be in the short Weirestrass form
𝑦2 = 𝑥3 + 𝑎𝑥 +𝑏 mod 𝑝 where 𝑎, 𝑏 and 𝑝 are curve-dependent and
𝑝 is prime.

The protocol follows the same workflow for both side, meaning it
can be performed simultaneously by both side, without attributing
a role. It can be broken down into three main parts: (i) password
derivation; (ii) password commitment; and (iii) confirmation.

Following the disclosure of Dragonblood attack [35] in 2019,
both the Wi-Fi standard [17] and EAP-pwd [18] are updating the
password derivation function of Dragonfly. Due to the fact that
updates are long to be approved, and even longer to be deployed,
current implementations of WPA3 still use the original derivation
function, as described in [16]. In this section, we will focus on
currently deployed implementations, hence the original design.

2.1.1 Password derivation. First, both the sender and the receiver
need to convert the shared password into a group element. To do so,
the standard describes a try-and-increment method called Hunting
and Pecking. This approach consists in hashing the password along
with the identity of both parties and a counter until the result-
ing value corresponds to a group element. For MODP groups, this
method, called hash-to-group, converts the password into an inte-
ger modulo 𝑝 . For ECP groups, the method, called hash-to-curve,
converts the password into the x-coordinates of an elliptic curve
point. The y-coordinate is chosen at the end from the parity of the
digest. The pseudocode describing this process on ECP groups is
summed-up in Listing 1.

Along the standardization process, various design flaws have
been identified regarding the password-dependent nature of this
function. Therefore, some mitigations were introduced to avoid

Along the standardization process, various design flaws have
been identified regarding the password-dependent nature of this
function. Therefore, some mitigations were introduced to avoid
password-dependent time variation in the execution of the func-
tion. Indeed, the number of rounds needed to find a value 𝑥 that
corresponds to a point on the curve is directly related to the pass-
word and the parties identities. First, the standard mandates a fixed
number of iterations in the derivation loop, noted 𝑘 , regardless of
the correct iteration. Setting this limit at 𝑘 = 40 is recommended
to minimize the risk of a password needing more iterations. All
extra operations are performed on a random string, with no impact
on the resulting element. Generating a dummy string for the extra

https://git.kernel.org/pub/scm/network/wireless/iwd.git/commit/?id=211f7dde6e87b4ab52430c983ed75b377f2e49f1
https://git.kernel.org/pub/scm/network/wireless/iwd.git/commit/?id=211f7dde6e87b4ab52430c983ed75b377f2e49f1
https://git.kernel.org/pub/scm/libs/ell/ell.git/commit/?id=47c2afeec967b83ac53b5d13e8f2dc737572567b
https://git.kernel.org/pub/scm/libs/ell/ell.git/commit/?id=47c2afeec967b83ac53b5d13e8f2dc737572567b
https://github.com/FreeRADIUS/freeradius-server/commit/6f0e0aca4f4e614eea4ce10e226aed73ed4ab68b
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operations is not described in RFC 7664, but has been discussed
by the CFRG during the standardization process, and has been in-
cluded in deployed variants of Dragonfly (such as TLS-pwd [19]
and SAE [1]). In our paper, we show that such an operation is not
enough to defend against our cache attacks.

Sensitive information may also leak when checking for the va-
lidity of the potential x-coordinate (Listing 1, line 7). Indeed, WPA3
mandates to compute the Legendre before computing 𝑦. However,
textbook Legendre may not be constant time and leak information
about the value of 𝑥 [20]. To overcome this issue, the protocol has
been updated [12, 15] to blind the computations by generating a
random number for each test, squaring it, and multiplying it to the
number being tested. The result is then multiplied by a per-session
random quadratic (non-)residue before computing the Legendre
symbol. The square root is then computed once and for all at the
end of the function.

2.1.2 Commitment and Confirmation phase. Once the shared group
element has been computed, both parties exchange a commit frame
followed by a confirmation frame to conclude the handshake, as
illustrated in Figure 1.

The commit frame is built with two values: a commit scalar
𝑠𝑖 = 𝑟𝑖 +𝑚𝑖 mod 𝑞, computed by adding two random numbers
𝑟𝑖 , 𝑚𝑖 ∈ [2, 𝑞), and a commit element 𝑄𝑖 = −𝑚𝑖𝑃 . When receiving
this frame, a party needs to check if the value 𝑠𝑖 is in the bounds
(i.e. 𝑠𝑖 ∈ [2, 𝑞)) and if the commit element 𝑄𝑖 belongs to the group.
A failure in any check results in aborting the handshake.

In the confirmation phase, both parties compute the master key
𝐾 . For MODP groups, the key can be used as is, but the x-coordinate
is extracted in case of ECP group. This value is then derived into two
sub keys using a KDF: 𝑘𝑐𝑘 is a confirmation key and𝑚𝑘 is used as
a master key for the subsequent exchanges. Using the confirmation
key, HMAC is computed over the transcript of the session. The
resulting tag is included then in a confirm frame, to be verified by
the other party. The handshake succeeds only if both verification
ends successfully.

2.2 Integration of Dragonfly in WPA3
WPA3 uses a slight variant of Dragonfly, called Simultaneous Au-
thentication of Equals (SAE) [1]. In this particular variant, the label
values are fixed and each party is identified by its MAC address
(𝑖𝑑1 and 𝑖𝑑2 in Listing 1).

The SAE handshake is executed between the client and the access
point (AP) in order to compute the Pairwise Master Key (PMK),
called𝑚𝑘 in Figure 1. Afterward, a classic WPA2 4-way handshake
is performed with this PMK in order to derive fresh cryptographic
material. Since the entropy of the initial master key is significantly
higher than inWPA2, the dictionary attack on the 4-way handshake
is no longer relevant.

2.3 Micro-architectural Preliminaries
2.3.1 Cache architecture. To mitigate the gap between slow mem-
ory access and fast processing, CPU benefits from fast access caches
that are located close to the processor cores. The storage capacity
is kept small, so only currently or recently used data are stored.
On modern processors, the CPU cache is usually divided into sev-
eral levels following an access hierarchy. Higher-level caches are

Alice Bob

Generate random rB, mB
sB = (rB+mB) mod q
QB = -mBP

Check sB and QB
K = rA(sBP+QB)
kck | mk = KDF(K | label2)
tr = sA | QA | sB | QB
cA = HMACkck(tr)

Check sA and QA
K = rB(sAP+QA)
kck | mk = KDF(K | label2)
tr = sB | QB | sA | QA
cB = HMACkck(tr)

Verify cB Verify cA

Commit(sA, QA) Commit(sB, QB)

Generate random rA, mA 
sA = (rA+mA) mod q
QA = -mAP

Confirm(cA) Confirm(cB)

Figure 1: Dragonfly handshake workflow. 𝑃 is the group el-
ement derived from the password, and 𝑙𝑎𝑏𝑒𝑙2 is a string that
may vary along with the protocol in which the handshake
is performed.

closer to the core and typically smaller and faster than lower-level
caches. In classical Intel architecture, which we will consider from
now on, CPU cache is divided into three levels. Each core has two
dedicated caches, L1 and L2, shared by all processes executing on
the same core. The third cache, called Last-Level-Cache (LLC) is
shared between all cores, hence all the processes.

When the CPU tries to access a memory address, it will first
check the higher level cache. If the memory line has been cached,
the processor will find it (cache hit). Otherwise, in a cache miss, the
processor will keep looking in lower memory, down to the DRAM if
needed. Once the appropriate memory line is found, the processor
saves its content in cache for a faster access in the near future.

Finally, in modern Intel CPUs, the LLC has a significant property
of being inclusive, meaning that it behaves as a superset of all
higher caches. An important consequence of this feature, exploited
in some attacks, evicting a memory line from the LLC will also have
impacts on L1 and L2 caches.

2.3.2 Cache optimizations. In some cases, memory lines can be
brought to cache even though they are not accessed. This is due
to some cache optimization, that makes the exact cache behavior
difficult to predict. For instance, Intel’s prefetcher ([23], Chapter 7)
will pair consecutive memory lines and attempt to fetch the pair of
a missed line to avoid looking for it in the near future. It may also
detect memory access patterns and prefetch the lines to be loaded
next.

2.3.3 Micro-architectural leaks. The time taken to access some data
will significantly change whether the data is already in a CPU cache
(cache hit), or if the CPU needs to look for it in the RAM (cache
miss). This cache interaction can be triggered by two behaviors: (i)
the CPU needs to access some data; (ii) the CPU needs to access
some instruction.
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In both cases, this can lead to a vulnerability if the element to
access is related to some secret information (e.g. the index of the
array or the instruction to access depends on a secret value). Given
this information, an attacker can use a spying process interacting
in a particular way with the cache to trigger different timing of
memory access. The nature of the interaction defines various types
of attacks, each having benefits and drawbacks. Most instruction-
driven attacks consist in probing the victim code, and inferring
some data from the instructions performed.

Depending on the threat model and the targeted architecture, an
attacker may or may not be able to access low level caches shared
between two threads. However, the LLC is shared between all cores.
From now on, cache will refer to the LLC unless specified otherwise.

2.4 Related Work
Micro-architectural attacks have long been used to gain information
about sensitive data. In 2014, Yarom and Falkner [38] presented a
ground breaking approach called Flush+Reload. Unlike previous
approaches, which infer victim memory line access based on the
cache set activity, the novel approach directly monitors memory
access in the inclusive L3 cache, yielding more interesting results.
Since then, this method has been exploited to recover sensitive
information in various contexts [3, 4, 6, 8, 9, 11, 14, 30, 32, 37, 39].

In 2016, Allan et al. enhanced the leakage by introducing the
Performance Degradation Attack [4]. The goal is to systematically
evict some well chosen memory line in order to make the leakage
easier and more reliable to exploit.

The Dragonfly handshake has already been reviewed in the past.
A first version was found vulnerable to offline dictionary attack [13].
In 2014, Clarke and Hao outlined a small subgroup attack due to a
lack of verification by the parties [10]. In 2019, Vahoef and Ronen
identified several flaws in different implementations of Dragonfly,
namely in WPA3 and EAP-pwd [35]. They outlined various vulner-
abilities at the protocol level as long as at the implementation level.
They demonstrated that some implementations of the hash-to-curve
method leak sensitive information through micro-architectural at-
tacks. Exploiting these leaks with a classic Flush+Reload attack,
they were able to learn the outcome of the first quadratic residue
computation, and therefore they could learn if the password was
successfully derived at the first iteration or not. We go one step
further and demonstrate that combining Flush+Reload and a well
chosen PDA, we are able to learn the exact iteration corresponding
to the successful derivation, which allows us to increase the proba-
bility of success, while significantly decreasing the complexity of
the attack with fewer traces and computations.

Tschacher Master thesis [26] offers valuable insight on how test
environment for WPA3 protocol fuzzing shall be implemented.

3 ATTACKING IWD IMPLEMENTATION
In this section, we extend the cache-based attack presented by Va-
hoef and Ronen in Dragonblood [35]. Indeed, the attack of [35]
(in Section 6) allows attackers to only learn the outcome of the
first derivation attempt, and needs a high number of traces with
different MAC addresses to be effective. Thus, various WPA3 im-
plementations have just decided to overlook such an attack, and
rather prioritize patching other vulnerabilities [2].

In our attack, we greatly reduce the required traces by exactly
estimating the number of iterations for a particular password with
high probability. Then, we show how our attack can be used to guess
the target password by tremendously cutting down the dictionary
size.

We demonstrated our attack on iNet Wireless Daemon6 (iwd)
version 1.8 (current version as of the time of writing), but we believe
that our work is applicable to any unpatched implementation that
is still vulnerable to the initial cache-attack (see Appendix C for
the case of the current version of FreeRADIUS).

3.1 Threat Model
Our attack targets Wi-Fi network, either a client or an Access Point
(AP). Thus, we assume that the attacker to be within range of the
physical target. To efficiently reduce the set of potential passwords,
attackers need to monitor multiple handshakes, involving the same
password and different MAC addresses. When the target is an AP,
this can easily be done either by waiting for a client to connect,
or by playing the role of a client. If attackers target clients, they
can setup multiple rogue clones of the legitimate AP, advertizing
stronger signal strength (thereby making the client automatically
choosing it) and different MAC addresses. If clients are already con-
nected to the legitimate AP, attackers can force a de-authentication
beforehand [7, 33]. Blocklist mechanisms are usually limited, since
implementations tend to apply them based on the MAC address of
the AP (that can easily be forged). We note that iwd might automat-
ically generate a new random MAC address every time the daemon
starts (or if an interface is detected, due to a hot-plug for instance).
However, the default configuration uses one permanent address.
We note that using different MAC addresses is not relevant to EAP-
pwd, that is the Dragonfly variant in FreeRADIUS (see Appendix C
for further details).

Due to the micro-architectural nature of the leak, attackers need
to be able tomonitor the CPU cache, using a classical Flush+Reload
attack for instance. Since cache access and eviction do not rely on
particular permissions, the most common assumption is that attack-
ers can deploy an unprivileged user-mode program in the targeted
device. This spy process runs as a background task and records the
CPU cache access to some specific functions. Papers in the litera-
ture also suggest that such memory access can be granted remotely,
performing the attack through JavaScript code injection in web
browser [28]. However, we did not investigate the effectiveness of
our attack in such a context.

3.2 IWD Implementation
The Dragonfly exchange implemented in iwd follows the standard
SAE [1]. Only the ECP-groups variant is supported with the NIST’s
curves P256 and P384. The corresponding Hunting and Pecking is
implemented in the function sae_compute_pwe, as illustrated in
Listing 2.

6https://git.kernel.org/pub/scm/network/wireless/iwd.git/
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1 bool sae_compute_pwe(struct l_ecc_curve ∗curve, char ∗pwd,
2 const uint8_t ∗a , const uint8_t ∗b) {
3 uint8_t seed [32], save [32], random[32], ∗base = pwd;
4 l_ecc_scalar ∗qr = sae_new_residue(curve, true ) ;
5 l_ecc_scalar ∗qnr = sae_new_residue(curve, false ) ;
6 for ( int counter = 1; counter <= 20; counter++) {
7 /∗ pwd−seed = H(max(a, b) || min(a, b) , base || counter)
8 ∗ pwd−value = KDF(seed, "SAE Hunting and Pecking", p)
9 ∗/
10 sae_pwd_seed(a, b, base , base_len , counter , seed) ;
11 pwd_value = sae_pwd_value(curve, seed) ;
12 if (! pwd_value)
13 continue ;
14
15 if ( sae_is_quadradic_residue (curve, pwd_value, qr , qnr) ) {
16 if (found == false ) {
17 l_ecc_scalar_get_data (pwd_value, x , sizeof (x) ) ;
18 memcpy(save, seed, 32) ;
19 l_getrandom(random, 32) ;
20 base = random;
21 base_len = 32;
22 found = true ;
23 }
24 }
25 l_ecc_scalar_free (pwd_value);
26 }
27 /∗ ... ∗/
28 }

Listing 2: Hunting and Pecking on ECP group as
implemented in iwd. Variable names have been adapted for
a better fit.

curves P256 and P384. The corresponding Hunting and Pecking is
implemented in the function sae_compute_pwe, as illustrated in
Listing 2.

Each type or function starting by l_* refers to a function in the
Embedded Linux Library7 (ell), a minimalist cryptographic library
developed by Intel. By default, this library is statically linked to
the binary at compilation time. Users can decide to use a dynamic
linking by specifying the correct option before compiling. We stress
that the linking strategy does not impact the result of our attack;
only some details in the addresses to monitor are concerned (see
Section 3.3).

It is easy to notice that explicit branching at lines 15 and 16
makes the control flow input-dependent. An attacker who is able to
tell at what iteration the code between line 17 and 22 is executed can
guess how many rounds are needed before successfully returning
from this function.

3.3 Cache-Attack Details
In order to efficiently determine at what iteration a password is
successfully converted, the attackers’ needs are twofold. First, they
need to be able to distinguish each iteration. Second, they shall
guess when the success-specific code (lines 17-22) is executed.

To achieve the first goal, we create a synchronization clock by
monitoring some memory line accessed at the beginning of each
loop. The call to kdf_sha256, a function of libell called inside
sae_pwd_value, is a good candidate. More specifically, we monitor
a memory address corresponding to the loop calling this hash func-
tion. Thanks to the complex nature of this operation, we were able

7https://git.kernel.org/pub/scm/libs/ell/ell.git/

to detect access to this call every time. Moreover, this particular
memory address is not accessed during the rest of the protocol,
thereby avoiding any potential noise in our traces.

Monitoring access to the code executed on success is less straight-
forward: the address range to be accessed inside sae_compute_pwe
is too small and too close to the rest of the loop to be reliably
monitored. The best choice is to monitor instruction in one of the
functions called at lines 17 to 19. Tests have shown that monitor-
ing inside l_getrandom yields the best results: other functions are
called too often, at various places, bringing noise to our traces.
However, random number generation is also part of the quadratic
residue verification (sae_is_quadratic_residue, line 15) in order
to blind the computation. Fortunately, these accesses can be distin-
guished given the number of cycles elapsed since the beginning of
the iteration.

Due to complex CPU optimization techniques (see Section 2.3.2)
and some system noise, the measurements are noisy and some
traces may yield incorrect results. Moreover, a call to l_getrandom
is usually performed in a few cycles, implying that we can miss this
call due to the temporal resolution of Flush+Reload.

In order to significantly improve the reliability of our results, we
combined the Flush+Reload attack with the Performance Degra-
dation attack (PDA), as presented in [4]. Since the first call to
l_getrandom occurs before the proper quadratic residue check,
we evict a memory line inside the code in charge of the Legendre
symbol computation. Hence, we significantly increase the delay
between our synchronization clock and the success-specific code,
while keeping a low delay to reach the first call to l_getrandom.

To sum up, by simply monitoring two addresses with a classic
Flush+Reload technique, and repeatedly evicting a single memory
address, we were able to collect traces that yield more relevant
results with only a few samples.

3.4 Miscellaneous Leak
As specified in the Dragonfly RFC [16] and in the SAE standard [1],
the number of iterations to perform during the password conver-
sion is not fixed. It can be defined as any non-negative integer,
providing it effectively guarantees a successful conversion with
high probability. RFC 7664 advises to set 𝑘 to at least 40 in order
to get roughly one password over one trillion that needs more
iterations.

As for iwd, the implementation sets 𝑘 = 20, making this prob-
ability significantly lower, with about one over 2 · 106 passwords
requiring more than 𝑘 iterations. In practice, using only password
drawn from existing dictionaries [25, 31], we were able to find a
consistent list of password needing more than 20 iterations (see
Appendix A for a sample). Using these password related dictio-
naries, with random MAC addresses, we found an average of 33.6
passwords (9.5 · 10−5% of the dictionaries).

In this scenario, a client would be unable to authenticate to the
AP until the password or the MAC address of one party is changed.
From an attacker perspective, finding such a tuple provides a lot of
information on the password, without the aforementioned cache-
attack. Indeed, they can assume that the password needs at least 20
iterations, and perform an offline dictionary attack as described in

Each type or function starting by l_* refers to a function in the
Embedded Linux Library7 (ell), a minimalist cryptographic library
developed by Intel. By default, this library is statically linked to
the binary at compilation time. Users can decide to use a dynamic
linking by specifying the correct option before compiling. We stress
that the linking strategy does not impact the result of our attack;
only some details in the addresses to monitor are concerned (see
Section 3.3).

It is easy to notice that explicit branching at lines 15 and 16
makes the control flow input-dependent. An attacker who is able to
tell at what iteration the code between line 17 and 22 is executed can
guess how many rounds are needed before successfully returning
from this function.

3.3 Cache-Attack Details
In order to efficiently determine at what iteration a password is
successfully converted, the attackers’ needs are twofold. First, they
need to be able to distinguish each iteration. Second, they shall
guess when the success-specific code (lines 17-22) is executed.

To achieve the first goal, we create a synchronization clock by
monitoring some memory line accessed at the beginning of each
loop. The call to kdf_sha256, a function of libell called inside
sae_pwd_value, is a good candidate. More specifically, we monitor
a memory address corresponding to the loop calling this hash func-
tion. Thanks to the complex nature of this operation, we were able
to detect access to this call every time. Moreover, this particular
memory address is not accessed during the rest of the protocol,
thereby avoiding any potential noise in our traces.

Monitoring access to the code executed on success is less straight-
forward: the address range to be accessed inside sae_compute_pwe
is too small and too close to the rest of the loop to be reliably
monitored. The best choice is to monitor instruction in one of the
7https://git.kernel.org/pub/scm/libs/ell/ell.git/

functions called at lines 17 to 19. Tests have shown that monitor-
ing inside l_getrandom yields the best results: other functions are
called too often, at various places, bringing noise to our traces.
However, random number generation is also part of the quadratic
residue verification (sae_is_quadratic_residue, line 15) in order
to blind the computation. Fortunately, these accesses can be distin-
guished given the number of cycles elapsed since the beginning of
the iteration.

Due to complex CPU optimization techniques (see Section 2.3.2)
and some system noise, the measurements are noisy and some
traces may yield incorrect results. Moreover, a call to l_getrandom
is usually performed in a few cycles, implying that we can miss this
call due to the temporal resolution of Flush+Reload.

In order to significantly improve the reliability of our results, we
combined the Flush+Reload attack with the Performance Degra-
dation attack (PDA), as presented in [4]. Since the first call to
l_getrandom occurs before the proper quadratic residue check,
we evict a memory line inside the code in charge of the Legendre
symbol computation. Hence, we significantly increase the delay
between our synchronization clock and the success-specific code,
while keeping a low delay to reach the first call to l_getrandom.

To sum up, by simply monitoring two addresses with a classic
Flush+Reload technique, and repeatedly evicting a single memory
address, we were able to collect traces that yield more relevant
results with only a few samples.

3.4 Miscellaneous Leak
As specified in the Dragonfly RFC [16] and in the SAE standard [1],
the number of iterations to perform during the password conver-
sion is not fixed. It can be defined as any non-negative integer,
providing it effectively guarantees a successful conversion with
high probability. RFC 7664 advises to set 𝑘 to at least 40 in order
to get roughly one password over one trillion that needs more
iterations.

As for iwd, the implementation sets 𝑘 = 20, making this prob-
ability significantly lower, with about one over 2 · 106 passwords
requiring more than 𝑘 iterations. In practice, using only password
drawn from existing dictionaries [25, 31], we were able to find a
consistent list of password needing more than 20 iterations (see
Appendix A for a sample). Using these password related dictio-
naries, with random MAC addresses, we found an average of 33.6
passwords (9.5 · 10−5% of the dictionaries).

In this scenario, a client would be unable to authenticate to the
AP until the password or the MAC address of one party is changed.
From an attacker perspective, finding such a tuple provides a lot of
information on the password, without the aforementioned cache-
attack. Indeed, they can assume that the password needs at least 20
iterations, and perform an offline dictionary attack as described in
Section 3.5. However, due to the low probability of finding these
tuples, we did not take it into account in the rest of the paper.

3.5 Dictionary Partitioning
By exploiting the leakage presented above, attackers can signifi-
cantly reduce the set of potential passwords with an offline brute-
forcing program. Given a dictionary and some𝑚 collected traces,
it iterates over the passwords and eliminates those that do not
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yield the same result when derived with the corresponding MAC
addresses. The remaining passwords, giving the same results, are
potential candidates that now constitute the new dictionary.

3.5.1 Theoretical success rate. Let each leak be represented by a
tuple (𝐴, 𝐵, 𝑘) with 𝐴, 𝐵 the MAC addresses and 𝑘 ∈ [1, 20] the
number of iterations. When converting a password into a group
element, the success of each iteration is bounded to the success of
the quadratic residue test. Let be 𝑝 the order of the underlying field
and 𝑞 the order of the generator? Since Dragonfly only support
elliptic curves of cofactor ℎ = 1, 𝑞 also denotes the total number of
points on the curve. Then, a random integer 𝑥 ∈ [0, 𝑝) is a quadratic
residue with probability:

𝑝𝑠 =
𝑞

2𝑝
≈ 0.5 ≈ 1 − 𝑝𝑠 . (1)

The input of the quadratic residue is considered random (being
the output of a KDF). Hence, each iteration is independent of the
others if we model the KDF as a random oracle. Let 𝑋 denote the
random variable representing the number of iterations of a trace,
and 𝑘 ∈ [1, 20]:

Pr[𝑋 = 𝑘] = 𝑝𝑘𝑠 . (2)
The probability for a trace to eliminate any tested password

depends on the number of iterations𝑘 . Let𝑌1 be the random variable
representing the success (1) or the failure (0) of a password to pass
each test in a single trace. We got 𝑌1 = 1 only if the password
succeeds all tests, i.e. with probability Pr[𝑋 = 𝑘], hence:

Pr[𝑌1 = 0 | 𝑋 = 𝑘] = 1 − Pr[𝑋 = 𝑘] = 1 − 𝑝𝑘𝑠 . (3)

More generally, the probability for a password to be eliminated by
a random trace is:

Pr[𝑌1 = 0] =
20∑
𝑖=1

Pr[𝑋 = 𝑖] · Pr[𝑌1 = 0|𝑋 = 𝑖] . (4)

Hence, the probability for a password to be pruned by at most 𝑛
traces is the sum of probabilities for it be pruned either at the first
trace or to pass the first and be pruned at the second, and so forth:

𝑝𝑦𝑛 = Pr[𝑌𝑛 = 0] =
𝑛−1∑
𝑖=0

Pr[𝑌1 = 0] · (1 − Pr[𝑌1 = 0])𝑖 . (5)

Let 𝐿 be the size of our dictionary, and 𝑑 be the number of
passwords wewant to eliminate. Let𝑍𝑛 be the number of passwords
we remove using 𝑛 traces. Since tests behave as independent trials,
𝑍𝑛 follows a binomial law, hence:

Pr[𝑍𝑛 ≥ 𝑑] =
𝐿∑
𝑖=𝑑

(
𝐿

𝑖

)
· 𝑝𝑖𝑦𝑛 · (1 − 𝑝𝑦𝑛 )𝐿−𝑖 . (6)

Table 1 gives an overview of the number of traces required to
eliminate all wrong passwords from different dictionaries, with a
probability greater than 0.95. We outline the benefit of our attack
compared to the original Dragonblood’s, reducing the average num-
ber of required traces by roughly 43%. In practice, we do not need to
remove all passwords from the dictionary, we only need to reduce
it enough, so that remaining passwords can be tested in an active
attack. Keeping more passwords in the dictionary would reduce
the number of required traces.

Dict. size Avg traces Avg traces
in [35]

Rockyou 1.4 · 107 16 29
CrackStation 3.5 · 107 17 30
HaveIBeenPwned 5.5 · 108 20 34
8 characters 4.6 · 1014 32 53

Table 1: A Comparison of the Number of the Required
Traces to Prune all Wrong Passwords Between Our attack
and Dragonblood.

3.5.2 Complexity of the offline search. Each test we perform is
bounded by the complexity of a quadratic residue test (which is
basically a modular exponentiation). The theoretical cost of such
an operation has already been discussed in [35], and can be applied
the same way in our context. Authors estimated, given their bench-
mark of the PowMod function [27] on an NVIDIA V100 GPU, that
approximately 7.87 · 109 passwords per second can be tested. Since
each test is independent, the amount of parallelization is up to the
attacker capacity, and can be higher. Namely, one can choose to split
the dictionary into 𝑘 pieces and run 𝑘 instances of the dictionary
reducer.

4 EXPERIMENTAL RESULTS
In this section, we describe our setup and give details about the
experimental results we obtained during our evaluation. All the
scripts and programs we used are made open-source8.

4.1 Experimental Setup
Our experiments were performed on a Dell XPS13 7390 running on
Fedora 31, kernel 5.6.15, with an Intel(R) Core(TM) i7-10510U and
16 GB of RAM. Binaries were compiled with gcc version 9.3.1 build
20200408 using the default configuration (optimization included).
Namely, the Embedded Linux Library version 0.31 was statically
linked to iwd during compilation.

During our experiment, we deployed hostapd (version 2.9) as an
Access Point, and iwd (version 1.7) as a client. Both were installed
and launched on the same physical device, using emulated network
interfaces, as described in [26].

We kept the default configuration on both ends, meaning the key
exchange is always performed using IKE group 19, corresponding
to P256. Similar results would have been observed using group 20
(curve P384) by tweaking the threshold of our spy process.

Our spy process has been implemented by following classical
Flush+Reload methods. Moreover, we used Mastik v0.02 imple-
mentation of the PDA [36].

4.2 Trace Collection
Once both client and AP were setup to use a password that was
randomly drawn from a dictionary, we launched the spy process to
monitor well-chosen memory lines (see Section 3.3). After each con-
nection, we disconnected the client and reconnected it a few times
to acquire multiple samples. This step emulates a de-authentication
attack aiming at collecting multiple samples with the same MAC
8https://gitlab.inria.fr/ddealmei/poc-iwd-acsac2020/-/tree/master/
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addresses. For each password we went through this process using
10 different MAC addresses, allowing us to acquire up to 10 inde-
pendent traces for the same password. For each MAC address, we
collect 15 samples. Our observations were consistently obtained
through testing 80 passwords in order to evaluate the effectiveness
and the reliability of our trace collection techniques.

We call sample the result of monitoring one Dragonfly key ex-
change, with a fixed password and MAC addresses. It is represented
by succession of lines, corresponding to either a call to the syn-
chronization clock (kdf_sha256) or to l_getrandom. The value
following each label is an indicator of the delay since the last call
to the synchronization clock. An example can be found in Appen-
dix B, corresponding to a trace yielding four iterations. A trace is a
collection of samples, all corresponding to the same password and
the same MAC address.

4.3 Trace Interpretation
We also designed a script that automatically interprets our traces
and outputs the most probable iteration in which the process of
password conversion first succeeds.

The trace parser process is described in Listing 3. The core idea
is to first reduce the noise by eliminating all poorly formed samples
(which could not be interpreted anyway, often because of system
noise). Then, each sample is processed independently, contributing
to the creation of a global trace score. To do so, each line of a sample
is read, and depending on the corresponding label, it is processed
as follow: (i) if the label is the synchronization clock, we increase
the iteration counter by one; (ii) otherwise, the score of the current
iteration is increased by the delay associated to that line. In the latter
case, if the delay is long enough (the threshold may be architecture
specific), we can stop the parsing of that sample and process the
next one. Once every sample of a trace has been processed, the
score of each iteration comes at as indicator of the most probable
successful iteration.

Since false positives have severe consequences, we chose to
eliminate any trace that does not yield a clear result. In such a
case, the script raises a warning to the attacker for future manual
interpretation.
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4.2 Trace Collection
Once both client and AP were setup to use a password that was
randomly drawn from a dictionary, we launched the spy process to
monitor well-chosen memory lines (see Section 3.3). After each con-
nection, we disconnected the client and reconnected it a few times
to acquire multiple samples. This step emulates a de-authentication
attack aiming at collecting multiple samples with the same MAC
addresses. For each password we went through this process using
10 different MAC addresses, allowing us to acquire up to 10 inde-
pendent traces for the same password. For each MAC address, we
collect 15 samples. Our observations were consistently obtained
through testing 80 passwords in order to evaluate the effectiveness
and the reliability of our trace collection techniques.

We call sample the result of monitoring one Dragonfly key ex-
change, with a fixed password and MAC addresses. It is represented
by succession of lines, corresponding to either a call to the syn-
chronization clock (kdf_sha256) or to l_getrandom. The value
following each label is an indicator of the delay since the last call
to the synchronization clock. An example can be found in Appen-
dix B, corresponding to a trace yielding four iterations. A trace is a
collection of samples, all corresponding to the same password and
the same MAC address.

4.3 Trace Interpretation
We also designed a script that automatically interprets our traces
and outputs the most probable iteration in which the process of
password conversion first succeeds.

The trace parser process is described in Listing 3. The core idea
is to first reduce the noise by eliminating all poorly formed samples
(which could not be interpreted anyway, often because of system
noise). Then, each sample is processed independently, contributing
to the creation of a global trace score. To do so, each line of a sample
is read, and depending on the corresponding label, it is processed
as follow: (i) if the label is the synchronization clock, we increase
the iteration counter by one; (ii) otherwise, the score of the current
iteration is increased by the delay associated to that line. In the latter
case, if the delay is long enough (the threshold may be architecture
specific), we can stop the parsing of that sample and process the
next one. Once every sample of a trace has been processed, the
score of each iteration comes at an indicator of the most probable
successfully iteration.

Since false positives have severe consequences, we chose to
eliminate any trace that does not yield a clear result. In such a
case, the script raises a warning to the attacker for future manual
interpretation.

4.4 Results
We summed-up the results of our experimentations, with different
number of samples for each MAC address, in Figure 2. With only
one measurement per address, approximately 70.5% of the traces
can be automatically interpreted (others have a high risk of miss-
prediction). However, the accuracy of our prediction is only 66%.
We need to collect 5 samples to achieve an accuracy greater than
90% (with 77% of usable traces). We achieve 99% accuracy with only
10 measurements, with a trace usability of 88%.

1 def parse_measures(measures):
2 score = [0 for i in range(k+1)]
3 for m in measures:
4 if is_malformed(m):
5 continue
6 # Increments score with the observed delay at each iteration
7 parse_measure(m, score )
8
9 # Convert the score of each iteration into frequency
10 freq = []
11 total_score = sum(score)
12 while sum(score) != 0:
13 m = max(score)
14 freq .append((i , round(m∗100.0/ total_score , 2) ) )
15 res [ res . index(m)] = 0
16
17 # Raise a warning if we are not sure of the result
18 if freq [0][1] − freq [1][1] <= 15 :
19 warning = True
20 print ( "WARNING! Not quite sure of the result ... " )
21 for x in freq :
22 print ( " {} ({}) − " . format(x [0], x [1]) )

Listing 3: Trace parsing script.

Figure 2: Reliability of our experiment given a different
number of samples to interpret for each MAC address. Ac-
curacy represents the closeness of our prediction to the real
value. Usable traces represent the percentage of traces we
were able to automatically exploit, without high risk ofmiss-
prediction.

We stress that trace usability only represents the ability for the
parser to automatically interpret the trace. For most warnings, a
manual reading of the samples (about 1-2 minutes) allows attackers
to successfully predict the round (some measurements do not yield
a clear result, and should be ignored). We also note that even if our
script was unable to decide between two adjacent values, e.g. five
and six, we can assume that more than four iterations are required
for password conversion.

These results outline the improvement of our attack compared
to Dragonblood. In [35], at least 20 samples were needed for each
MAC address to achieve a success rate of 99% (only 10 in our attack).
Moreover, with our attack, each successfully interpreted trace gives
at least as much information, and roughly twice more on average
(see Section 3.5). Consequently, our work greatly reduces the num-
ber of the required measurements (or samples) in order to prune all
wrong passwords in a given dictionary. For instance, ourwork needs

Figure 2: Reliability of our experiment given a different
number of samples to interpret for each MAC address. Ac-
curacy represents the closeness of our prediction to the real
value. Usable traces represent the percentage of traces we
were able to automatically exploit, without high risk ofmiss-
prediction.

4.4 Results
We summed-up the results of our experimentations, with different
number of samples for each MAC address, in Figure 2. With only
one measurement per address, approximately 70.5% of the traces
can be automatically interpreted (others have a high risk of miss-
prediction). However, the accuracy of our prediction is only 66%.
We need to collect 5 samples to achieve an accuracy greater than
90% (with 77% of usable traces). We achieve 99% accuracy with only
10 measurements, with a trace usability of 88%.

We stress that trace usability only represents the ability for the
parser to automatically interpret the trace. For most warnings, a
manual reading of the samples (about 1-2 minutes) allows attackers
to successfully predict the round (some measurements do not yield
a clear result, and should be ignored). We also note that even if our
script was unable to decide between two adjacent values, e.g. five
and six, we can assume that more than four iterations are required
for password conversion.

These results outline the improvement of our attack compared
to Dragonblood. In [35], at least 20 samples were needed for each
MAC address to achieve a success rate of 99% (only 10 in our attack).
Moreover, with our attack, each successfully interpreted trace gives
at least as much information, and roughly twice more on average
(see Section 3.5). Consequently, our work greatly reduces the num-
ber of the required measurements (or samples) in order to prune all
wrong passwords in a given dictionary. For instance, ourwork needs
160 measurements for the Rockyou dictionary, while Dragonblood
needs 580 measurements. Roughly speaking, the measurements
are cut down by at least 3. Moreover, our attack requires to vary
the MAC addresses less often (almost twice as fewer). Thus, our
work performs better in practice, particularly in a context where
cache-based measurements are limited. Of course, we argue that
our results can be generalized for other implementations suffering
from the same type of vulnerability.
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5 DISCUSSION AND CONCLUSION
5.1 Recommendations for Mitigations
Following the disclosure of Dragonblood, several mitigations have
been proposed [17, 18] to replace the iterative hash-to-group func-
tion by a deterministic function. This countermeasure suits our
requirements. However, backward compatibility might be a re-
quirement in industry. Hence, we suggest to use a branch-free
implementation of the loop in order to avoid any residual leakage.
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1 # Constant time binary buffer selection copy. All operations have
2 # identical memory access pattern
3 def const_time_select (mask, true_val , false_val , dst ) :
4 for i in range(len ( dst ) :)
5 dst [ i ] = (mask & true_val) | (~mask & false_val )
6
7 # Hunting and Pecking function
8 def sae_compute_pwe(curve, pwd, addr1, addr2) {
9 x, x_cand = bytearray (32) , bytearray (32)
10 save , found = 0, 0
11
12 qr = sae_new_residue(curve, true )
13 qnr = sae_new_residue(curve, false )
14
15 # Set up the password and a dummy
16 base = bytearray ( len (pwd))
17 dummy = get_random(len(pwd))
18
19 for counter in range (1,41) :
20 # Constant memory access version of base = found ? dummy : password;
21 # were the value is copied into base
22 const_time_select (found, dummy, password, base)
23 seed = H(max(a, b) , min(a, b) , base , counter)
24 # KDF handles gracefully the case x_cand > curve.p
25 x_cand = KDF(seed, "SAE Hunting and Pecking", curve.p)
26
27 # res = 1 or 0 depending whether x_cand is valid or not
28 res = is_quadradic_residue (curve, x_cand, qr , qnr)
29 const_time_select_bin (found, x, x_cand, x)
30 save = const_time_select (found, save , seed[−1] & 0x01)
31
32 # found is 0 or 0xff here and res is 0 or 1. Bitwise OR of them
33 # (with res converted to 0/0 xff ) handles this in constant time.
34 found |= res ∗ 0xff
35
36 # save is used to chose the value of y
37 pwe = point_from_bin(curve, x , save)
38 return pwe

Listing 4: Python-like pseudocode of a constant time version
of Hunting and Pecking on P256.

160 measurements for the Rockyou dictionary, while Dragonblood
needs 580 measurements. Roughly speaking, the measurements
are cut down by at least 3. Moreover, our attack requires to vary
the MAC addresses less often (almost twice as fewer). Thus, our
work performs better in practice, particularly in a context where
cache-based measurements are limited. Of course, we argue that
our results can be generalized for other implementations suffering
from the same type of vulnerability.

5 DISCUSSION AND CONCLUSION
5.1 Recommendations for Mitigations
Following the disclosure of Dragonblood, several mitigations have
been proposed [17, 18] to replace the iterative hash-to-group func-
tion by a deterministic function. This countermeasure suits our
requirements. However, backward compatibility might be a re-
quirement in industry. Hence, we suggest to use a branch-free
implementation of the loop in order to avoid any residual leakage.

We implemented such mitigations into iwd (see Listing 4), in-
spiring ourselves from hostapd patch9. We estimated the overhead

9https://w1.fi/security/2019-1/

induced by such countermeasure using the rdtsc assembly in-
struction, which offers very high precision. We made 10,000 mea-
surements for both the mitigated derivation and the original one,
while varying the password. We observed a negligible overhead
(1.4 · 10−9% on average). The code complexity is barley affected
by our changes. Considering the attack impact and the negligible
downside of the patch, we strongly recommend developers to in-
clude it in their products. Following our discoveries, both iwd and
FreeRADIUS has smoothly integrated our patch in their code.

5.2 Discussion
After the original Dragonblood publication, implementations re-
ceived various patches, and dropped the support of some curves
(mainly Brainpool curves). However, the main source of vulnera-
bilities, the hash-to-group function, is still unchanged, despite the
standards update.

In spite of proper branch-free implementations being publicly
available, with a negligible overhead, most implementations did not
patch the secret-dependent control-flow of the password derivation.
We believe the lack of patch is strongly related to the lack of Proof
of Concept dedicated to specific implementations. Dragonblood
only describes the attack for hostapd which has been fixed.

We demonstrated that this vulnerability has more potential than
the original one, allowing to recover more bits of information with
fewer measurements. We provide a full Proof of Concept of our
vulnerability on Intel’s implementation, but we believe it can extend
to others (see Appendix C). Our approach illustrates the risk to
users when cryptographic software developers dismiss a widely
potential attack. This is unfortunately the prevailing approach for
security vulnerabilities, but we show that for standards like WPA3,
this approach is fraught with danger. Therefore, we hope that the
Wi-Fi Alliance would drop their ad-hoc mitigations, for constant-
time algorithms by design that do not rely on savvy developers to
provide secure implementations. The history of PKCS#1 v1.5 (with
the Bleichenbacher attacks) shows that such a path is full of risks.
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A PASSWORD REQUIRING MORE THAN 20
ITERATIONS ON IWD

Here is a sample of passwords requiring more than 20 iterations to
be successfully derived into a point on P-256. MAC addresses are

noted at the beginning of each list; the needed number of iterations
is at the end of the line.

An extended list can be found in our gitlab repository10.
## 992606B4AD9F FFF23027CB34 ##
RAJARATNAM 21
RA-KLEINENBERG 22
ellochika 21
VILIFYINGLY 24
believeingod1 24
BELLABOOBABE 25
PRERRAFAELISTA 21
DOGYLOVE1 21
macarthurreviews 23
AMERICANHOSPICE 21
CHALLNENGE 22
HAUNTEDEP 21
Nibbler112 21
0800581064 22
SAKHLIKIS 21
UPDMDFDr48 26
kanakaman 30
OXNWRABB35 23
0874739218 23
DEPEFCQ56 22
taxidermically 21
38concert 21
NONPARISHIONER 22
NOOMMAY7685 21
gramocelj 21
YUNKALLAH 21
MILE-MICHEL-HYACINTHE 23
STICKHANDLING 22
faras-071196 21
FARNHAM69 22
10231976JR 21
1102001625160 23
wimjsbyk46 21
veroleg351 27
elasticized 21
cutelildevilj87 21
JLNRUJY98 25
FENWICK-1994 21

## CF116C758375 553ED5460AA7 ##
th-commando-regiment 24
thechildrensbank 21
0143576155 22
POWERTOHARM 22
EMILYELAINE 22
becks4svs 22
wvdbincy98448342 25
RCCB16023 22
9117820114 24
mbuyisa's 24

10https://gitlab.inria.fr/ddealmei/poc-iwd-acsac2020/-
/blob/master/data/results/buggy_passwords.txt
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islandinstlawrencewithducks 23
volume-issue 21
ASPINKK202 21
jratlnve54 22
s9040954i 21
cerinek007 21
JULIESULLIVAN 24
DOXIE\_CHIC 21
AujcYOLE24 22
WALTHAMSTOWEAST 25
tightrope-men 22
FOODENGINEERINGMAG 26
PROSTITITUES 22
SHEAILY872264 22
contest-win-weezers-boombox 21
drkencarter 21
UNIVERSALVEILING 21
taka-taka 21
0849852969 21
otiwbawm61 21
ouchana170672 23
0860168289 22
SIEDING63 21
GORDON520P 26
midmanhattan 21
QgUPaKF67 21
3THUGLOVE 21
scarcetheband 30
tegetiformans 21
canadiancray 25
egzistencija 21
civilrecht 23
BONGONITO 22

B SAMPLE OF A TRACE OF IWD
Sample of a trace yielding four iterations. This has been acquired us-
ing the password superpassword, withMAC addresses E2F754FE22D1
and 9203835A576B. Annotations have been added and are not part
of the original trace.

# First five lines correspond to the qr and qnr generation
# They are ignored during parsing
l_getrandom 5435937 (90)
l_getrandom 5439791 (88)
l_getrandom 5443732 (96)
l_getrandom 5447611 (88)
l_getrandom 5455232 (88)
# Here the loop begins
kdf_sha256 5459308 (82)
kdf_sha256 3324 (86)
kdf_sha256 4091 (82)
kdf_sha256 3972 (84)
l_getrandom 108 (90)
# At the fourth iteration, we notice long-delayed call
# to l_getrandom. It means we can stop there.
l_getrandom 3889 (88)

kdf_sha256 3981 (82)
kdf_sha256 4089 (84)
l_getrandom 106 (90)
kdf_sha256 3734 (86)
kdf_sha256 9058 (100)
kdf_sha256 417 (84)
l_getrandom 501 (90)
kdf_sha256 5691 (84)
l_getrandom 129 (94)
kdf_sha256 3795 (88)
# Other long-delayed calls can be observed, hence
# the need to acquire multiple samples
l_getrandom 4320 (96)
kdf_sha256 4524 (86)
...

C ATTACK ON FREERADIUS
FreeRADIUS supports EAP-pwd, a variant of Dragonfly, as a non-
default authentication method, encapsulated in the RADIUS pro-
tocol. Beside the patches to Dragonblood attacks, we show that
EAP-pwd is still vulnerable to timing attacks (due to a variable
number of iterations), and to the same cache attack we described in
Section 3. In this section, we studied the last version of FreeRADIUS
(v3.0.21 at the time of writing).

C.1 EAP-pwd vs SAE
SAE and EAP-pwd being two variants of Dragonfly, they differ in a
few points. Some of them are only instantiation details (values of
some labels), while others have more impactful consequences on
the workflow and the security of the protocol.

First, EAP-pwd standard does not mandate a constant number
of iterations. Indeed, it exits the conversion loop as soon as the
password is successfully converted. Since a constant number of
iterations would not change the outcome of the conversion, some
implementations (not FreeRADIUS) include this side-channel miti-
gation anyway.

Next, EAP-pwd does not benefit from the same symmetry as SAE:
client and server are clearly defined. This distinction is highlighted
by the fact that the server generates a random token for each new
session. This token will be part of the information hashed at each
iteration during the password conversion. Hence, while a password
is always derived into the same element in SAE (as long as the
identities do not change), each EAP-pwd session ends up with a
new group element, due to the randomness brought by the token.

C.2 FreeRadius implementation
The Dragonfly exchange implemented by FreeRadius follows EAP-
pwd’s specification [40]. All related functions are defined in the
according module11. Namely, the Hunting and Pecking is imple-
mented in the function compute_password_element, as illustrated
in Listing 5. We cut some parts of the code, and renamed variables
for the sake of clarity.

11https://github.com/FreeRADIUS/freeradius-server/tree/v3.0.x/src/modules/rlm_
eap/types/rlm_eap_pwd

https://github.com/FreeRADIUS/freeradius-server/tree/v3.0.x/src/modules/rlm_eap/types/rlm_eap_pwd
https://github.com/FreeRADIUS/freeradius-server/tree/v3.0.x/src/modules/rlm_eap/types/rlm_eap_pwd
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C.2 FreeRadius implementation
The Dragonfly exchange implemented by FreeRadius follows EAP-
pwd’s specification [40]. All related functions are defined in the
according module11. Namely, the Hunting and Pecking is imple-
mented in the function compute_password_element, as illustrated
in Listing 5. We cut some parts of the code, and renamed variables
for the sake of clarity.

This implementation heavily relies on OpenSSL12 to perform
cryptographic operations, such as hashing, manipulating big inte-
gers and elliptic curve points. By default, the library is dynamically
linked from the system-wide installation when building the project.

A quick look at the code in Listing 5 shows a few branches inside
the loop. At line 30, the iteration will end if the output of the KDF
is bigger than the prime. At line 43, if the candidate is not an x-
coordinate of a point on the curve, the rest of the loop is skipped.
The same phenomenon occurs at line 47 and 52. Finally, at line
58, the loop ends if a password have been found, making the total
number of operation password-dependent.

Since the issue of having a password-dependent number of itera-
tion (yielding a clear timing difference) has already been discussed
in [35], we will focus on the cache attack allowing to guess the
exact number of iterations needed to convert the password, even if
the total number of iterations is fixed.

C.3 Cache-Attack Against FreeRADIUS
Using some minor adaptations, we applied our cache attack (de-
scribed on iwd in Section 3) to guess the exact iteration in which
the password is successfully derived. We stress that switching to
a constant number of iterations, with a constant time (or masked)
Legendre symbol computation, would mitigate the timing attack,
but our cache attack would still be practical.

We perform this attack by only monitoring two memory lines,
both in the OpenSSL cryptographic library. To do so, we use the calls
to H_Update (called line 13 to 17) as a synchronization clock. Since
multiple calls to this function follow each other, we catch themwith
high probability. Next, we use the call to EC_POINT_is_on_curve
(line 46) as a success-specific code. More specifically, this function
calls set_affine_coordinates from OpenSSL internals, which is
also called if the original check (line 42) is successful success. Thus,
some piece of code is called twice on success, and is never called
on failure.

C.4 Experimental results
We implemented a full Proof of Concept of our attack, and made it
publicly available13 after the vulnerability has been patched. The
experimental setup is the same as described in Section 4.1.

Due to the server-generated token, we only have a single mea-
surement to guess how many iterations are needed to convert the
password. We tested our attack on 80 different passwords, spying
on 15 connections for each password, yielding a total of 1200 traces.
With a single measurement, we successfully guessed the exact num-
ber of iterations for 93% of the traces. We outline some consistency

11https://github.com/FreeRADIUS/freeradius-server/tree/v3.0.x/src/modules/rlm_
eap/types/rlm_eap_pwd
12https://www.openssl.org/
13https://gitlab.inria.fr/msabt/attack-poc-freeradius

1 int compute_password_element (pwd_session_t ∗session, uint16_t grp_num,
char const ∗pwd, int pwd_len, char const ∗ id_server , char const
∗ id_peer , uint32_t ∗token)

2 {
3 /∗ Instantiation of some variabales and contexts ... ∗/
4
5 ctr = 0;
6 while (1) {
7 if ( ctr > 100)
8 goto fail ;
9 ctr++;
10
11 // pwd−seed = H(token | peer−id | server−id | pwd | ctr )
12 H_Init ( ctx ) ;
13 H_Update(ctx, ( uint8_t ∗) token, sizeof (∗ token) ) ;
14 H_Update(ctx, ( uint8_t const ∗) id_peer , id_peer_len ) ;
15 H_Update(ctx, ( uint8_t const ∗) id_server , id_server_len ) ;
16 H_Update(ctx, ( uint8_t const ∗) password, password_len);
17 H_Update(ctx, ( uint8_t ∗)&ctr , sizeof ( ctr ) ) ;
18 H_Final(ctx , pwe_digest) ;
19
20 // prfbuf = KDF(pwe_digest, "EAP−pwd Hunting And Pecking", p)
21 BN_bin2bn(pwe_digest, SHA256_DIGEST_LENGTH, rnd);
22 if (eap_pwd_kdf(pwe_digest, SHA256_DIGEST_LENGTH, "EAP−pwd

Hunting And Pecking", strlen("EAP−pwd Hunting And Pecking"),
prfbuf, primebitlen) != 0)

23 goto fail ;
24 BN_bin2bn(prfbuf, primebytelen , x_candidate) ;
25
26 /∗ Handle BN conversion issue ... ∗/
27 if ( primebitlen % 8)
28 BN_rshift (x_candidate , x_candidate , (8 − ( primebitlen % 8) ) ) ;
29 if (BN_ucmp(x_candidate, session−>prime) >= 0)
30 continue ;
31
32 /∗
33 ∗ need to unambiguously identify the solution , if there is
34 ∗ one ...
35 ∗/
36 is_odd = BN_is_odd(rnd) ? 1 : 0;
37
38 /∗
39 ∗ solve the quadratic equation , if it ' s not solvable then we
40 ∗ don' t have a point
41 ∗/
42 if (! EC_POINT_set_compressed_coordinates_GFp(session−>group,

session−>pwe, x_candidate, is_odd, NULL))
43 continue ;
44
45 // Check if the point is on the curve
46 if (! EC_POINT_is_on_curve(session−>group, session−>pwe, NULL))
47 continue ;
48
49 if (BN_cmp(cofactor, BN_value_one())) {
50 /∗ make sure the point is not in a small sub−group ∗/
51 if (! EC_POINT_mul(session−>group, session−>pwe, NULL,

session−>pwe, cofactor, NULL))
52 continue ;
53
54 if (EC_POINT_is_at_infinity( session−>group, session−>pwe))
55 continue ;
56 }
57 /∗ if we got here then we have a new generator. ∗/
58 break;
59 }
60
61 /∗ Clean allocated memory and handle errors ... ∗/
62 }

Listing 5: FreeRADIUS code sample, extracted from
eap_pwd.c.

This implementation heavily relies on OpenSSL12 to perform
cryptographic operations, such as hashing, manipulating big inte-
gers and elliptic curve points. By default, the library is dynamically
linked from the system-wide installation when building the project.

12https://www.openssl.org/

A quick look at the code in Listing 5 shows a few branches inside
the loop. At line 30, the iteration will end if the output of the KDF
is bigger than the prime. At line 43, if the candidate is not an x-
coordinate of a point on the curve, the rest of the loop is skipped.
The same phenomenon occurs at line 47 and 52. Finally, at line
58, the loop ends if a password have been found, making the total
number of operation password-dependent.

Since the issue of having a password-dependent number of itera-
tion (yielding a clear timing difference) has already been discussed
in [35], we will focus on the cache attack allowing to guess the
exact number of iterations needed to convert the password, even if
the total number of iterations is fixed.

C.3 Cache-Attack Against FreeRADIUS
Using some minor adaptations, we applied our cache attack (de-
scribed on iwd in Section 3) to guess the exact iteration in which
the password is successfully derived. We stress that switching to
a constant number of iterations, with a constant time (or masked)
Legendre symbol computation, would mitigate the timing attack,
but our cache attack would still be practical.

We perform this attack by only monitoring two memory lines,
both in the OpenSSL cryptographic library. To do so, we use the calls
to H_Update (called line 13 to 17) as a synchronization clock. Since
multiple calls to this function follow each other, we catch themwith
high probability. Next, we use the call to EC_POINT_is_on_curve
(line 46) as a success-specific code. More specifically, this function
calls set_affine_coordinates from OpenSSL internals, which is
also called if the original check (line 42) is successful success. Thus,
some piece of code is called twice on success, and is never called
on failure.

C.4 Experimental results
We implemented a full Proof of Concept of our attack, and made it
publicly available13 after the vulnerability has been patched. The
experimental setup is the same as described in Section 4.1.

Due to the server-generated token, we only have a single mea-
surement to guess how many iterations are needed to convert the
password. We tested our attack on 80 different passwords, spying
on 15 connections for each password, yielding a total of 1200 traces.
With a single measurement, we successfully guessed the exact num-
ber of iterations for 93% of the traces. We outline some consistency
in the errors: most errors occurred because the spy process misses
on call to the synchronization clock. Hence, we can achieve a better
reliability by loosing some information: assuming that if we guess
that the password needs 𝑥 iterations to be converted, then it may
need 𝑥 or 𝑥 + 1 iterations, allowing us to reach 99% accuracy.

Consideringwe achieve this accuracywith a single measurement,
we are able to recover a password with fewer measurements than
in previous attacks, even by softening our guess.

13https://gitlab.inria.fr/msabt/attack-poc-freeradius
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